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Table 1. (Table 2.2 in text) 3 Observations...?

Table 2.2
Changes in the Ton Concentration of the External (Nutrient) Solution and in the Root Press Sap
of Maize and Bean

External concentration (mm)
Concentration in the

After 4 days” root press sap (mm)
Ion Initial Maize Bean | Maize Bean
Potassium - 2.00 0.14 | 0.67 160 84
Calcium 1.00 0.94 0.59 3 10
Sodium 0.32 0.51 0.58 0.6 6
Phosphate 0.25 0.06 0.09 6 12
Nitrate 2.00 0.13 0.07 38 35
Sulfate 0.67 0.61 0.81 14 -6

“No replacement of water lost through transpiration.

Marschner, 1995
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Waisel et al., 1995 Figure T Aspects of the rhizosphere that may influence the arrival of ions at the absorptive surface of the
root. The extent of the unstirred layer that surrounds roots in solution culture is indicated. In this layer ions

can be at quite different concentrations to those in the bulk solution.



Fig. 2. (Similar to Fig. 2.32) Apoplastic and
Symplastic pathways
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Fig. 2A (Fig. 2.1 In text)

FIGURE 2.1 Cross-section of two rhizodermal cells of a maize root. V. vacuole; C, cytoplasm; W, cell wall, E, external solution. Courtesy of
C. Hecht-Buchholz,



Fig. 3. (Fig. 2.15 In text)
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Fig. 2.13 Relative uptake of boron by barley roots as a function of the external solution pH.

Uptake at pH 6 = 100 at each supply concentration. Solid line: percentage of undissociated

H,BO;. Key for boron concentrations mg 17 ¥V, 1.0; O, 2.5; O, 5.0; ¥, 7.5; A, 10.0.

(Reproduced from Oertli and Grgurevic, 1975, by permission of the American Society of
Agronomy.)

Marschner, 1995



Fig. 4. Symplastic Movement
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Fig. 2.35 Model for symplasmic (1) and apoplasmlc (2) pathways of radial transport of 10ns
across the root into the xylem Key: €, active transport; «—, resorption. (Modified from
Lduchli, 1976a.)
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Fig. 5. (Fig. 2.33

In text)
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FIGURE 2,33 Schematic representation of plasmodesmata including
substructural components, Solute fluxes between adjacent cells occur in
the cyvtoplasmic sleeve, between the plasma membrane and the appressed
endoplasmic reticulum (ER) forming the desmotubulz. Partial control
of solute fluxes by callose deposition in the cell wall. The cytoplasmic
sleeve is interrupted by actin and other proteins that create microchannels
through which solutes can diffuse. Modified from Maule (2008).



Fig. 6. Generalized Plant Cell
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Figure P-2 A generalized plant cell. The
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organelles in electron micrographs. (W. A.

Jensen and F. B. Salisbury, 1984, Botany, p. 46.)
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Fig. 7. Lauchli’s principal membrane fluxes
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Fig. 7A (Fig. 2.12 In text)
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Fig. 8. Active and Passive Transport

Semipermeable
membrane

Chemical potential [| Chemical potential
in compartment A in compartment B

Description

.UjB

ﬂjB

!JJA

Passive transport occurs
spontaneously down a chemical-
potential gradient.

At equilibrium, & = i,
If there is no active transport,
steady state occurs.

Active transport occurs against a
chemical potential gradient.

najA < ﬁJB
AG per mole for movement of j from
A to B is equal to /i® - fij*. For an
overall negative AG, the reaction must

be coupled to a process that has a AG
more negative than —( 18- i*).

PLANT PHYSIOLOGY , Third Edition, Figure 6.1 © 2002 Sinauer Associates, Inc.



Fig. 9.
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Transport
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Table 2. Nerst Equation Applied

TABLE 6.1
Comparison of observed and predicted ion concentrationsin
pea root tissue

Concentration

in e:l(.ternal Internal concentration (mmol L")

medium
lon (mmol L) Predicted Observed
K* 1 /74 75
Na* 1 /74 8
Mg2* 0.25 1340 3
Ca%t 1 5360 2
NO3_ 2 0.0272 28
cl- 1 0.0136 7
H,PO," 1 0.0136 21
5042" 0.25 0.00005 19

Source: Data from Higinbotham et al. 1967.
Note:The membrane potential was measured as =110 mV.

PLANT PHYSIOLOGY, Third Edition, Table 6.1 © 2002 Sinauer Associates, Inc.
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Fig. 13. Evidence: ATP / H+ Pump
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Fig. 4. Correlation between net H* efflux and K* influx in roots of 24 barley varieties.
Roots of intact seedlings exposed to 1 mM K,SO, plus 0.5 mM CaSO, for 24 h (r =
0.88) (Glass et al., 1981).



Fig. 14. Evidence: ATP & Membrane
Potential
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Fig. 15. Carrier Concept & Michaelis-Menten

Kinetics
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Fig. 16. More than one carrier or transport
mechanism?

Michaelis—Menten kinetics
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Fig. 17 (Fig. 2.7 In text) Types
of transport mechanisms
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FIGURE 2.7 Nomenclature of transport proteins. Schematic representation of primary active transport mechanisms, such as ABC transporters (e.g..
glutathione conjugate pump), metal transporters (e.g., Ca’*-ATPase) and H'-ATPases, secondary active transport mechanisms, such as the K "H™ sym-
porter or the Na™/H™ antiporter, and passive transport mechanisms, such as the NH, " carrier and the K " channel. Figure adapted from White (2003).
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Fig. 19. Schematic of principal mechanisms
of ion transport
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Fig. 2.8 Principal mechanisms of ion transport in plasma membranes. (A) H' pumping
ATPase; (B) ion channel; (C) carrier; (D) coupling proteins for signal perception and transduc-
tion. (Modified from Hedrich et al., 1986; with permission from Trends in Biochemical Sciences. )



Fig. 20 (Fig. 2.21 In text)

External
Asulu}icn Plasma Cytoplasm Vacuole
(ipoplasn) membrane (ol0] IO
077777 : % Cat?
Cat’ Ly s ] & (K?)
[ . ] | R®COO e ; 1<Tn o

5 oA 1

.1\ R*COO
H & ow

ez® A

“'GURE 2.21 Model for internal pH stabilization and for charge compensation at different ratios of cation:anion uptake from the external solution. A.
-=ssive uptake of cations (Cat™), for example, with K,SO, supply. B. Excessive uptake of anions (An "), for example, with Ca(NO;); supply.



Fig. 21. Distribution of channels, symporters,
and antiporters in a typical plant cell

Symporters

Sucrose mino
H*Na* a(ld

hS ol /‘/
» ?\ cyrosoL ,?

H Efflux
7 ptasma Antiporters Y

Mgh

Hexose

H+ H+\s¥.mp N —y o
pumps < | N e

ADP+ P
ATP |~ TADP+P
Anthocyanin p—— . AB C
)
pH 55 - P‘:‘mps i .. ;:
- AR e transporters
= ore  / ADPsP
ADP + P, s ATP a2+
2¢; H . pump
Fast va(uoiar ’ . ADP + Py I a2+
(FV) channel Slow vacuolar
Anions k_p, (V) channel
(malate?
C° NO3)
Channels
d fylng Ie‘::atyd\ng
‘“a gb Q °“:‘r;(1
OUTSIDE OF CELL Channels

PLANT PHYSIOLOGY , Third Edition, Figure .11 © 2002 Sinauer Associates, Inc.



Fig.22. Additional schematics of transport
mechanisms...

Uniport channels (pores, no binding) and carriers (bind) for
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Fig. 23. Schematic of symport and antiport
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Fig. 24. Schematic of a symport in action
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Active uptake of an ion (S) through a symport using the
energy stored in the proton gradient across the membrane



Fig. 25. Schematic of a PP,ase pump
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Fig. 26. Aquaporin water channel in a membrane are
Involved Iin water transport and osmoregulation. Flux
IS Influenced by phosphorylation
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