The Overwhelming Feeling Of Being A Cattle Producer

Troy Marshall, Cow-Calf Weekly

The reality of livestock production, and really for most businesses, is that there will never be enough time to do everything that needs to be done. We have all heard countless times about the importance of prioritization, but the urgency of unexpected events -- like cattle getting outside of the fence -- quickly override priority lists on a daily basis. The unfortunate result is that key tasks don’t always get completed on time.

Efficiency is rarely hurt by work ethic, but it is hurt by not finding the time to do the most important things. A recent study concluded that the average executive has 300-400 hours of reading and projects backlogged at home and in the office.

The bottom line is that we must all come to grips with the fact that we will never be caught up. Instead of making lists of all you would like to accomplish, sit down and define your top responsibilities and top priorities (three is plenty). Then, each day, pick out the single most important item on that list that has to be accomplished, and break it down in small-enough chunks that the task can be accomplished in one day. Then, do it.

Constantly ask yourself: “What is the most valuable use of my time right now?” It might range from fixing a fence to spending time with your wife. Whatever the answer, start doing it and work on concentrating on the task at hand. And, don’t let frustration, anxiety and the pressure of other tasks invade your mind and slow your progress.

Hoos-Your Grazing Network

Fall - 2004

It’s Not Too Late to Plan for Fall and Winter Grazing

Chris Penrose, Dave Samples, and Clif Little
Ohio State University Extension Agents

As autumn approaches and we are starting to get an idea on our winter feed supplies and the number of animals that we want to keep into next year, it is a good time to assess the quality and amount of forages that will be needed. For many, corn and purchased hay can be a reasonable option depending on local availability. For others, there is still time to plant winter rye for fall and winter grazing.

Winter rye is a small grain that can produce high quality forage for grazing in December and March. What makes this an attractive option is that it is very high in quality and is the first to green up in the spring. This is a good choice for livestock with high nutritional requirements. Winter rye can be planted from the middle of August through the middle of September at 90 - 100 pounds of seed per acre. When rye is two to four inches tall, 50 - 75 pounds of nitrogen will stimulate growth and additional applications in early March will increase production.

It has been demonstrated over and over that winter rye can be successfully broadcast over standing crops such as soybeans prior to harvest. It grows very nicely and produces winter grazing.

As you plan for next year, turnips and brassicas would be additional choices for seeding when extra forage is needed in the fall. Stockpiling fescue and orchardgrass is very cost effective and requires the least effort to extend the grazing season. Initiate the stockpiling around early August. The addition of 50 pounds of nitrogen per acre at this time will result in a 1000 - 2000 pound increase in yields. The exception to the recommendation is where substantial amounts of clover are in the stand. Research shows little response to N application where the stand consists of more than 40% red clover.
Forage Tips

August

Check flow rate of springs during low flow period. Additional water storage may be needed.

If needed, adjust soil pH with the addition of limestone on pastures where legumes will be sown in late winter or next spring.

Scout for potato leafhopper in alfalfa fields.

Seed forage grasses. Overseed with legumes in late winter.

Consider sowing small grains for fall grazing if idle land exists.

Apply nitrogen to pastures that are to be stockpiled; 40 to 60 pounds of nitrogen per acre should be sufficient.

September

Inventory existing plants in your pastures. Many times it is better to improve the management of existing forages rather than tearing up and reseeding.

Final forage harvest during the growing season should be made by the first week, second week, and third week, respectively, for northern, central, and southern Indiana.

After hay harvest, the forage should be fertilized to maintain stands and promote winter hardiness. Apply 15 pounds P205 and 60 pounds of K20 annually for each ton of hay harvested.

Soil test fields intended for spring forage seeding and apply lime yet this fall.

Scout for potato leafhopper in new alfalfa seedings. This insect is especially harmful to young alfalfa seedlings.

October

A final hay harvest can be made when growth has stopped and the temperature drops to 24 degrees F or below.

Consider pasturing corn stover as a feed cost reduction strategy.

In grass tetany problem areas, be sure all cows get at least 1 ounce of magnesium oxide per head daily in the mineral mix or protein supplement.

Grazing Corn Stalk Residue

When corn stalks become available for grazing, how soon should cows be moved to stalks? In most years, stalk grazing should start as soon as possible as the nutrient value of stalks will decline the longer they are exposed to weathering, particularly the husk and leaves. Grazing stalks right away will put more condition on cows and faster gains on young stock.

Rick Rasby, University of Nebraska Extension beef specialist, advises producers to check fields for excess grain before grazing as too much corn can cause acidosis and founder. Cattle must be adapted to a higher grain ration before grazing if a problem is expected.

Rasby recommends grazing the residue by giving animals only 1-2 weeks’ worth of stalks at a time. This permits a higher stocking rate and provides a more uniform diet, he adds.

However, if heavy snow or mud occurs before all areas are grazed, some good-quality feed is usually lost. As a result, leaving cattle in the same entire field for two months or longer is more common than strip grazing. Whole-field grazing permits fast early gains but may require supplementing the cows later in the season after all grain has been consumed.

Be sure to provide salt and mineral that contains vitamin A. And once all the grain is gone and only husk and leaves are left, cows will need additional protein -- from a source that will degrade in the rumen -- to help the cattle efficiently use the husk and leaves.

-- Rick Rasby, professor of animal science and Extension beef specialist, and Joe Roybal, Cow-Calf Weekly

Re: STRIPS OF SUMMER ANNUALS IN PADDOCKS

From: a grazing listserve

As I sit in central Pennsylvania, where it is blistering hot and bone dry (in August of 2002), I am thinking about next year and what to do differently to deal with the dry conditions that may show up again. I was wondering if it would be a good idea to plant 10 -12 foot strips of summer annuals in some of my paddocks. I would locate these on the side opposite where the cows enter. If for some reason I didn’t want the cows to eat this crop, I could string up some polywire. Does anyone have any ideas on this?

Thanks, MTCHERRY94

Good Morning MT cherry,

It works very well!! I have done it with strips of rape and turnips in my ryegrass/crabgrass pastures, and in some of the permanent cool season paddocks. I have put a strip of herbal mixture consisting of Chicory (2 types), plantain, vetch, alfalfa, burnnet, yarrow, a cultivated dandelion from Europe, and comfrey. The cows seem to love it, going to it first like a salad bar, then to the grass mixture for their main course. In the spring the grass is often ready to be grazed before the herbs, so as you said, it can be fenced off with polywire.

Take care, Dick B in NC
Stocking Rates and Management-Intensive Grazing

Susannah Hole, SE Indiana Grazingland Specialist, NRCS

Stocking rates are a vital component of a Management-intensive Grazing (MIG) system. It is important to realize that in this type of rotational system you are increasing your management, not the number of animals.

Proper stocking rates will determine your success with MIG. Understocking can result in excess forage, more time and resources spent mowing or making hay, or a choked out stand of grass. Overstocking can result in running out of forage sooner, higher stored feed costs and the potential for soil erosion.

As a general rule of thumb, you can figure 1 cow per 1.5 acres for productive pastures. Those farms using marginal and poor cropland for pasture, which have not seen fertilizer or lime “since Dad had the place”, will be overstocked at this ratio. In Orange County, pasture productivity ranges from 2.5 tons per acre on Caneyville-Crider soils to 4.4 tons per acre on Wakefield soils. The Caneyville-Crider soils are those most likely to be in pasture, so be sure to adjust stocking rates accordingly. At the 2.5 tons per acre the ratio will be closer to 1 cow per 3-5 acres.

For comparisons sake, if you figure grazing grass costs a penny a pound, then the relative cost of other feeds would be: 4.5 cents for grass silage, 7 cents for corn silage and 9 cents for grass hay. That is 8 times the input for making hay, which most folks try to maximize. These numbers would suggest trying to maximize forage production instead and let the animals do the harvesting.

In the long run, you will find your profitability increases as a result of proper stocking rates and rotational grazing by decreasing your stored feed costs and allowing forages to regrow.

Stocking Rate Affects Many Things -- Jim Gerrish, Grazing Consultant

Stocking rate is defined as a measure of animals assigned to a grazing unit for a period of time. It is expressed as the number of animals, animal units, or animal live weight assigned to a grazing unit.

Increased stocking rate means more animal demand on the forage base. Without concurrent increase in forage production or quality, that means reduced intake per animal. As intake declines, individual performance declines. While a certain amount of individual performance loss can be traded for increased output per acre, eventually a level of performance is reached which is the minimum requirement to pay per head costs of each animal. If performance drops below this level, the grazier is losing money. One year may be no problem, but year after year develops long-term profitability problems.

Forage Management Day

Forage Management Day, offered through the Purdue University Crop Diagnostic Training and Research Center, is being held on September 2. The emphasis of the training will be pasture oriented. The intent is to create a management plan for a less-than-fully-improved pasture and to put the plan in writing. The location of the training will be the Crop Diagnostic Training and Research Center near West Lafayette and the Scholer Animal Sciences Farm in Warren County. Targeted attendees are graziers that want to implement a pasture plan for their own farm, agriculture business employees that interact with pasture-owning clientele, and agency personnel (Extension, NRCS, SWCD, IDNR etc).

Details are posted at the Crop Diagnostic Training and Research Center web site. The web site is:

Pre-registration is necessary.

Keith Johnson, Professor of Agronomy and Forage Crops Specialist
915 West State St., Lilly Hall of Life Sciences, West Lafayette, IN 47907-2054
phone: 765-494-4800 fax: 765-496-2926 e-mail: johnsonk@purdue.edu

Grazing Conferences

The Heart of America Grazing Conference (two-days) will be in Ohio in January 2005.

The Northern Indiana all-day grazing conference will be Friday, February 4, 2005, in Shipshe-wana.

The Union County Soil and Water Conservation District, Oakwood Farm, and the Indiana Grazing Lands Conservation Initiative sponsor this issue. Thank you for your support!!!!! Sponsors are needed in order to pay the printing and mailing costs.

1694 graziers receive this newsletter via hard copy; 86 receive it via email.

All programs and services of the Hamilton County Soil and Water Conservation District are offered on a nondiscriminatory basis without regard to race, color, religion, sex, age, marital status, or disability.
Forage Focus White Clover

White clover provides high quality grazing; it is an excellent nitrogen-fixing perennial legume, and it is a good soil improvement forage species. It should never be sown without an adapted cool-season grass, nor should it be the dominant forage in a mixture. It can cause bloat.

White clover grows naturally with Kentucky bluegrass; their growth characteristics are very similar. Many pastures that have been overgrazed will evolve to Kentucky bluegrass and white clover as the meristematic tissue needed for regrowth is close to the soil surface. White clover will grow in combination with perennial ryegrass, tall fescue, bromegrass and orchardgrass.

Optimum growth and persistence occurs on fertile soils with adequate soil moisture availability and when grazing minimizes competition from other plants.

This clover is a low growing, short-lived perennial. Where it is well adapted, individual plants will often live for 3 to 5 years. It is a leafy plant that often grows 8 to 12 inches tall and that spreads by stolons (above ground runners) and forms shallow roots at nodes.

It reestablishes itself naturally by reseeding, so the species will persist for many years.

Three types of white clover, based on plant size, are grown in the USA. Small white clover is generally referred to as “wild white”.

The “intermediate” types are larger than “wild white” clover. Many unnamed varieties of white clover sold in the USA are intermediate types and are referred to as “Common” or “White Dutch, white clover.

Large white clover, commonly referred to as “ladino”, is taller growing.

Graziers’ Comments

Ed Heckman

Sizing grazing paddocks and setting up rotation intervals may take some trial and error. This will depend on the type of forage, the condition of the stand or density of the forage, and the forage height.

For quick regrowth and a healthy stand, forage should not be grazed shorter than three inches. This saves enough leaf area for photosynthesis and reduces the need for the plant to draw too heavily on root reserves.

A general recommendation is to use at least three feet of ground rod per joule of energizer output.

The spacing of ground rods is very important. Rods should be at least ten feet apart.

Galvanized pipe can be used as ground rods as long as the ground wire is firmly attached to the pipe.

A plug-in surge protector should be used with a fence energizer.

A lightning diverter should have a better ground than the energizer. Using induction coils in combination with diverters helps to prevent damage to energizers.

Don’t let your livestock eat just the best and leave the rest. There aren’t problems; there are challenges and learning opportunities.

Research shows that cows graze about 8 1/2 hours per day and take about 60 bites per minute while grazing. All the forage a cow is going to consume has to come in those 30,600 bites she takes in a day. So each bite should be a mouthful of the right quality.

I plan to renovate ten percent of my grazing acres each year.

Each new forage variety requires above-average management to realize its potential.

Over time, pasture soils will become more acidic in the top inch. This occurs because calcium and magnesium leach. Plus, nitrogen from legumes or from a commercial supplier creates an acidic condition. Manure and urine are also acidic in nature. So, lime is periodically needed.

Build one fence per year.

A one-acre square equals 840 feet of fence.
10 Ways to Save Winter Feed Dollars

Dan Buskirk, Michigan State University beef cattle specialist, offers these tips for saving, rather than squandering, winter feed dollars:

- Use by-products or limit feed grains.
- Utilize crop residues during late fall and early winter.
- Stockpile forage from pastures to reduce the need for supplemental late-fall feed.
- Split the herd into feeding groups -- two-year olds and thin cows in one group, and older, more dominant, higher-conditioned cows in the other group.
- Test feedstuffs. Testing is the only way to determine nutrient content of forage. Spending a few dollars on forage analysis can have a high rate of return through more effective use of forage inventories.
- Compare supplement prices based on energy or protein. Base your purchase on price and content of the nutrients needed.
- Control feed storage losses on hay bales. Such storage losses can easily range from 2 - 18%.
- Restrict feeding losses. Losses of feeding large, round hay bales may reach 20-30% of the dry matter fed. Simple differences in the design of round bale feeders can account for up to 11% of the feeding loss. Feeding bales in relatively large feeders, limiting feed supply to a daily ration and limiting access to feeders for 8-12 hours per day are all methods that may reduce feed losses.
- Provide adequate mineral and vitamin nutrition. It is important in enhancing efficiency.
- Maintain moderate-sized cows. Maintenance energy requirements are directly related to cow weight. There are several cow size indicators, which astute breeders retaining replacement females will note. A few include the sire’s mature weight and frame size, and his expected progeny difference (EPD) for his daughters’ mature weight.

What is Integrated Resource Management?

Integrated Resource Management (IRM) is a nationwide program for beef cow-calf producers where the entire beef business is analyzed as a whole to find any “weak links in the chain” of beef production. Indiana has participated in the IRM program since 1990, and we have 18 herds on the program.

What is analyzed and who is involved?

The beef herd is broken down into seven areas of analysis. They are: records, fertility, nutrition, health, marketing, environment and genetics. Each segment is evaluated, and the herd owner proposes short- and long-term goals for the herd. A team approach is emphasized, and key players may include: the herd owner, herd manager, extension educator, forage specialist, herd health veterinarian, nutritionist and state IRM coordinator and technician.

What is the goal of IRM?

The goal of the IRM team is to improve the profitability of the beef herd.

Who should join?

Producers that embrace change and truly want to improve their herds are our potential members. The beef herd needs to be a significant portion of your agricultural business.

What is the cost and what do I receive?

The cost is $2-3/cow/year depending upon how your records are submitted. All cows must be identified and aged, and all calves need birth date, ID, sex and weaning weight. After the records are submitted, they will be analyzed and returned to you. You will also receive a yearly herd visit with one or more of the Purdue IRM team members.

Who do I contact for more information?

The state IRM technician is Debbie Stevenson, BS, RVT (765-494-9234,) and the state IRM coordinator is W. Mark Hilton, DVM (765-494-8559,). Please contact either person for more information about IRM.
Stream-side Grazing in Indiana
Victor Shelton, SW Indiana Grazingland Specialist, NRCS

While livestock are not the only cause of stream damage, they can cause problems. Livestock cause problems when these conditions occur:

- Overgrazing near streams
- Poor water access
- Poor stream crossings
- Overstocking of pastures
- Stream-side feedlots

What can be done? The first and easy answer, of course, is to fence them all out!!! But there are alternatives. These situations can be solved with good planning and management.

Research on these issues has been done and includes:

- Time in water and voiding
- Preferred crossing/access areas
- Alternative water supplies
- Bacteria in stream-flow
- Stream-side Prescribed Grazing

Time in Water and Voiding
Cattle accessed watercourses for drinking or for crossing, but they seldom lounged in the water as they did in ponds and dugouts. A total of 52 site days were recorded.

For each site day, number of animals “in” or “near” the water was counted every 15 minutes. Drinking time, crossing time, and animals defecating or urinating in or near the water was also recorded. Time in water ranged from 0-1400 minutes, with only two days having more than 600 minutes. Herd size ranged from 10-85 cows plus calves. The dawn-to-dusk observations were done on eight farms for up to three years.

The results were interesting on voiding. Cattle commonly accessed, drank, or crossed watercourses without voiding. Probability of cow defecation or urination was 0% on 77% of the measured days. The calf numbers were 0% on 87% of the measured days.

This research was coordinated by Dr. E. Ann Clark, University of Guelph, and reported in Grazing Cattle and Riparian Ecosystems.

Preferred Crossing/Access Areas
Cattle do not like soft creek bottoms. They prefer solid footing. When good rock bottom crossings were constructed, then cattle not only used the constructed rock bottom crossings, but they rarely strayed off of them.

Crossings/access design needs to allow for ease of crossing and must occasionally provide limited access for drinking water.

When #2 stone is used in these areas, it is large enough to be uncomfortable under foot. Then livestock are not tempted to stand around in the water, but they will use the crossing or access site.

Solid bottom access areas should ideally be used for limited time periods only, such as 4-7 days every 30-45 days.

Alternative Water Sources

When livestock were provided alternative sources of good quality water, visits to the streams were greatly reduced. Distance traveled to water also made a difference. When the travel distance was less than 800 feet and alternative water was supplied, the streams were rarely used.

Clean water is also important. A five-year study in Alberta found that cattle tend to perform up to 20% better when they drink clean water. Studies like these help producers recognize the importance of good quality water.

Bacteria in Stream-flow
High concentrations of bacteria were found at cattle access points where actual disturbance of streambed material had occurred. Concentrations decreased rapidly with time after disturbance stopped. Sites with solid or constructed rock bottoms were significantly lower in bacteria concentrations.

Coliforms?? The original source of coliforms found in the streambed sediment needs to be correctly identified. Livestock may stir it up, but they my not be the source.

Stream-side Prescribed Grazing
Proper grazing is a good solution

- Flash grazing of stream-sides (1/2 to 2 days maximum)
- Proper stocking rate of livestock
- Adequate rest periods between grazing
- Proper time period for grazing
- Drinking water close to grazing livestock
- Minimum stubble heights maintained on forage

What are the benefits?

- Improved water quality
- Reduced loss of valuable grazing land
- Potential for lowering fencing costs
- Stream bank damage lessened
- Possible increase in wildlife value

It can be a win win situation. Limited access is much better than no access.

"It's just temporary, but next time, don't take your Rogaine and Viagra at the same time."