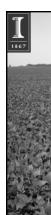


A bushel: Corn vs. Soybean

- 56 lb corn x 84.5% dry matter = 47.3 lb DM
- 60 lb soybean x 87% dry matter = 52.2 lb DM
 - A bushel of soybean has 10% more DM
- Difference in DM composition

	Carbohydrate	Protein	Oil					
	~ ~ %							
Corn	85	10	5					
Soybean	40	40	20					
	"Production Values" (McDermitt and Loomis 1981)							
Energy capture from glucose unit	0.83	0.40	0.33					

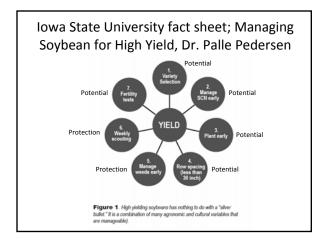
'Plant cost' per bushel

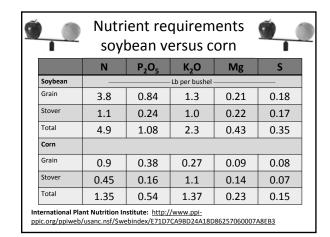

	Carbo- hydrate	Protein	Oil	Total		
	Lb	s glucose nee	eded per bush	nel		
Corn	48	12	7	67		
Soybean	25	52	32	109		

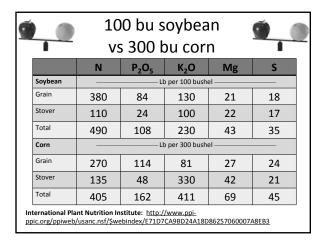
- Effectively, soybean requires ~63% more energy per bushel than corn due to a difference in grain composition
- In addition, soybean C3 versus corn C4
 - Needs to 'work' over twice as 'hard'

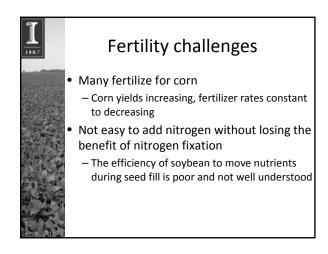
The point,

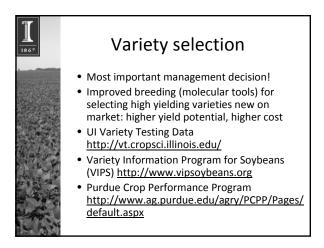
- The train is not off the track,
 - But, there is no reason to be complacent
- We need to be realistic in our goals for increasing yield and evaluating management changes/inputs
- Be realistic about what inputs will do, there are NO "Magic Pills"

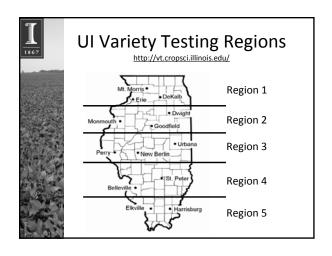


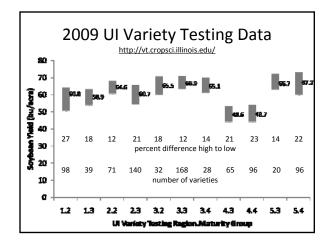

It takes a total management approach for high yields

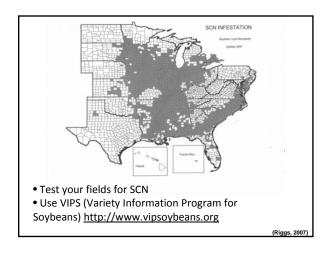

- · Appropriate fertility levels
- Variety selection
 - Including SCN and other appropriate protection traits
- · Good planting and agronomic practices
 - Timely
 - Row spacing and seeding rate
- · Increasing inputs for high yields??

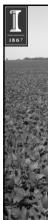

Pest management protects yield potential

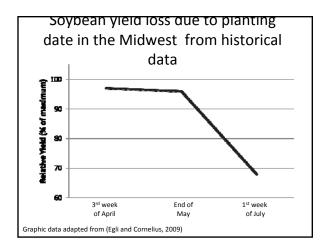

- Eliminate bushels lost to weeds
- Eliminate bushels lost to other pests by thresholds MUST SCOUT!









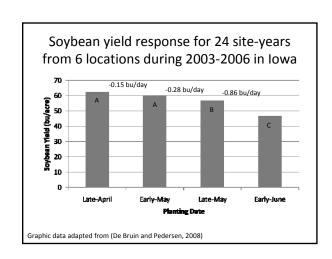


You must have 'good' planting practices

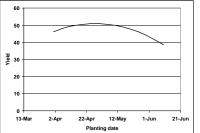
- Plant timely (not necessarily early)
- Row spacing less than 30 inch for high vields
- Seeding rate likely does NOT need to increase

Plant timely, not necessarily early

- · Historical perspective
 - Egli D.B. and P.L. Cornelius. 2009. A Regional Analysis of the Response of Soybean Yield to Planting Date. Agron. J. 101:330-335.
 - They used data from 9 previous manuscripts (Midwest)
 - 1960, '79, '81, '81, '87, '88, '90, '90, 2005
 - In the Midwest rapid decline in soybean yield began on May 30th
 - 0.7% per day
 - (40 bu/acre = 0.3 bu; 50bu=0.35bu; 60bu=0.4bu)

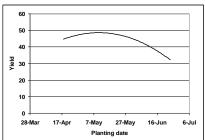


Plant timely, not necessarily early

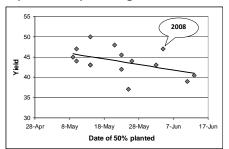

- Robinson, A.P., S.P. Conley, J.J. Volenec, and J.B. Santini. 2009. Analysis of high yielding, early-planted soybean in Indiana. Agron. J. 101:131-139.
 - 6 planting dates (late-March to Mid-June), 3 varieties, 2006 and 2007
 - Yields were lower in Late-March and Mid-April versus late-April through Mid-May for 2 varieties, and yield were not increased for other 4
 - Last week of April through ~10th of May produced the highest yields
 - Yields decreased 0.5 bu/day after May 15th

Plant timely, not necessarily early

- De Bruin, J.L. and P. Pedersen. 2008. Soybean seed yield response to planting date and seeding rate in the Upper Midwest. Agron. J. 100:696-703.
 - 4 planting dates (late-April, Early-May, Late-May, Early-June), 6 locations, 2003 through 2006 (24 site-years)
 - · Highest yields Late-April and Early-May



Response to planting date in Illinois


- . 8 site-years in the 1990s at Monmouth and DeKalb
 - Planting date for the highest yield was April 27, and the yield loss was 0.10, 0.23, 0.36, and 0.54 bushels per day of delay for the May 1-10, May 11-20, May 21-30, and June 1-10 periods, respectively.

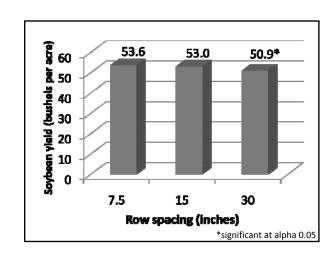
Response to planting date in Illinois

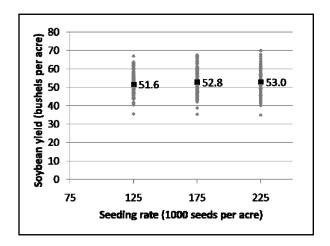
- 5 site-years at Brownstown and Dixon Springs, 2006-08
 - Planting date for the highest yield was May 9, and the yield loss was 0.10, 0.26, 0.42, and 0.59 bushels per day of delay for the May 10-20, May 20-30, June 1-10, and June 10-20 periods, respectively.

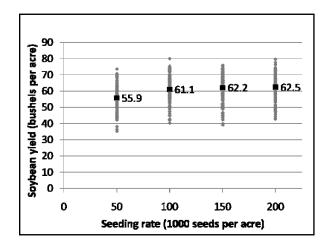
Response to planting date in Illinois

- Correlation between date of 50% completed soybean planting in Illinois and statewide yield (bu/acre), 1994-2008
- The date of 50% completed planting in 2009 was June 5th

Reducing soybean seeding rates: Is it risky?

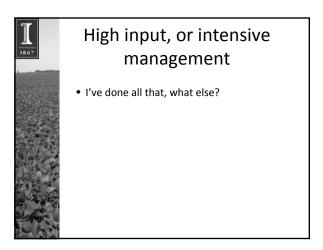

• May 8th 2009; issue 7 of *the Bulletin* and can be accessed at:

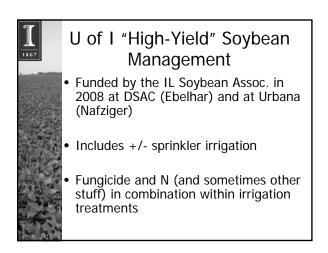

http://ipm.illinois.edu/bulletin/article.php?id=1115


- What are the drawbacks to reduced seeding rates?
 - Established plant stand too low
 - Slower to canopy reducing weed suppression
 - Just does not 'look right'

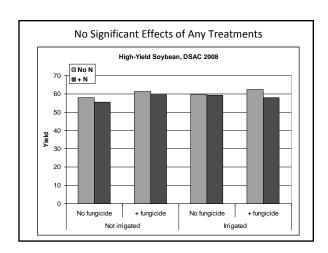
Two studies in Illinois

- 1) Eric Adee data from 1998 at Monmouth + 1999 and 2000 at Monmouth, DeKalb, and Urbana (7 site years)
 - 3 row widths 7.5", 15", and 30"
 - 3 seeding rates 125, 175, and 225 (X 1,000)
- 2) Emerson Nafziger (UI Variety Testing) 2005
 -2008 (33 site years)
 - 4 seeding rates 50, 100, 150, and 200 (x 1,000)
 - 30" rows

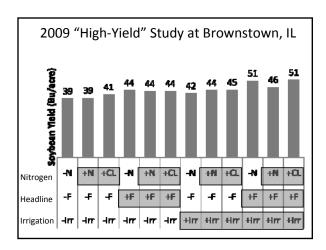


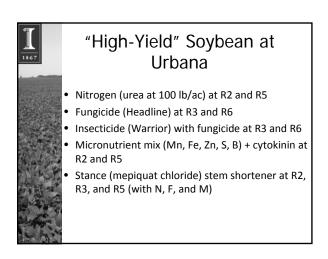


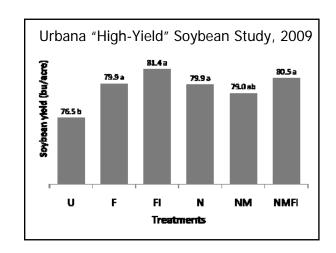
Economic Optimum Soybean Seeding Rates based on 33 site years of data generated from 2005 through 2008 at locations throughout Illinois Price of Soybean value in dollars bushel-1 soybean \$ 1000 Optimum seeding rate (1000 seeds acre-1) 0.05 0.15 133 133 0.25 120 122 0.35 0.45 0.55 0.65


Economic optimum seeding rates based on price of soybean seed and product value Price of Soybean value in dollars bushel⁻¹ \$ 1000-Optimum seeding rate (1000 seeds ha-1) 3,000 seeds per acre 0.05 0.15 0.25 The increasing importance in difference of Economic Optimum 0.35 0.45 0.55 32,000 seeds per acre 0.65



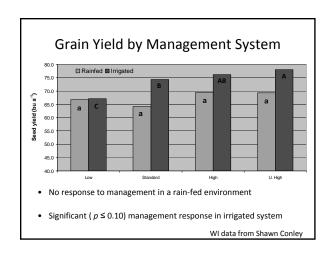






	Urbana	"High-Yield"	Soybean	Study,	2008
--	--------	--------------	---------	--------	------

		Not
Treatment	Irrigated	irrigated
	bushels	per acre
Untreated	63	59
Nitrogen	71	59
Fungicide	68	59
Micronutrients	62	58
Nitrogen+fungicide	68	60
Nitrogen+fungicide		
+micronutrients	67	61
Average	66	59


"High-Yield" Experiment in

Wisconsin from Shawn Conley

• RCB split-plot design with 5 reps

- Experimental unit: 20' by 50'

	Treatments										
Irrigation		LOW INPUT		Τ	STANDARD			KITCHEN SINK	Τ	ULTRA KITCHEN SINK	
	1	Irrigated		2	Irrigated		3	Irrigated	4	Irrigated	
Seeding Rate		175,000	П		175,000			260,000	\top	260,000	
Fertigation		28%			28%			28%		28%	
Inoculant					Optimize			Optimize Op		Optimize	
Seed treatment					CruiserMaxo			CruiserMaxx		CruiserMaxx	
Foliar Insecticide					Warrior			Warrior		Warrior	
Foliar Fungicide	liar Fungicide Headline (1x)		()		Headline (2x)		Headline (2x)				
								Quilt (1x)		Quilt (1x)	
Soil applied biocide								Contans		Contans	
Foliar nutrients								Micros (3x)		Micros (3x)	
Nitrogen								Chicken litter		Chicken litter	
P and K			Г					40P + 80K		40P + 80K	
Ethephon										Yes	П

Differential Input Costs per Acre

		_	Rain-fed								
		Irrigated					Kain-ted				
Input	Product	Low	Stnd	High	U. High		Low	Stnd	High	U. High	
Irrigation		64.80	64.80	64.80	64.80						
Biocide	Contans WG			42.00	42.00				42.00	42.00	
Manure	Chickity Doo Doo			43.00	43.00	Г			43.00	43.00	
N + P + K	dry fertilizer			68.00	68.00	Г			68.00	68.00	
Inoculant	Optimize		2.13	2.13	2.13			2.13	2.13	2.13	
Seed treatment	Cruiser Maxx		9.50	9.50	9.50			9.50	9.50	9.50	
Seed	DSR-2200	35.00	35.00			Г	35.00	35.00			
Seed	DSR-2200			52.00	52.00	Г			52.00	52.00	
PGR	Pistill				31.09					31.09	
Foliar fungicide	Headline		15.00	30.00	30.00			15.00	30.00	30.00	
Foliar fungicide	Quilt			15.00	15.00	Г			15.00	15.00	
Foliar nutrients	Mangro DF+ plus B			13.00	13.00	Г			13.00	13.00	
Foliar nutrients	EB Mix			13.49	20.23				13.49	20.23	
Foliar nutrients	28%	10.05	10.05	10.05	10.05	Г					
Insecticide	Warrior		6.00	6.00	6.00	Г		6.00	6.00	6.00	
Total		109.85	142.48	368.97	406.80	Г	35.00	67.63	294.11	331.95	

Comparison of System Profitability

Section 1982

Section

© 2009, Univ of Illinois

WI data from Shawn Conley

Increasing soybean yield brings challenges

- Fundamental research questions need to be addressed
- Focus on proper agronomics: variety selection, fertility, planting date, row spacing, seeding rate, and scouting
- Technology to 'over come' time constraints and logistics of 'good' planting need to be developed/adopted
- There is no "magic pill" and increasing inputs may not pay, many products entering the market needs to be evaluated

Why talk about drift?

- Complaints from specialty crop growers are on the rise.
- 79% were from applications made to agronomic crops.
- Of agronomic crop drift complaints, 67% were from commercial applications and 25% from private applications.

Why talk about drift?

- Spotty pest control
- Wasted chemicals
- Off-target damage
- Litigious Society
- Result-higher costs-\$\$\$
- Environmental impact
- More populated areas?
- Public more aware of pesticide concerns! (Negative)

Why talk about drift?

- Issues with giant ragweed, horseweed (marestail), waterhemp, lambsquarters
- Dicamba soybean
- DHT soybean

