Annual Summer Grasses as Forage Crops
Ed Heckman

Summer is the time during the growing season when shortages of forage most often occur in Indiana. Commonly grown perennial cool-season grasses such as orchardgrass and tall fescue become semi-dormant during the hot, summer months. During this period, cool season grasses may produce very little growth and shortages can quickly occur, if moisture is inadequate.

When these conditions exist, some non-traditional crops may be considered to meet the needs of the livestock.

Summer annual grasses can provide excellent summer forage, while grazing small grains can ease fall or spring shortages. Brassica crops such as rape, kale, and turnips make good, late summer and fall pasture, but they require advanced planning to have a long enough growing season.

Maintaining the proper herd size, utilizing a rotation grazing system, fertilizing, and renovating pastures with a legume can reduce summer forage shortages. Planting annual summer grasses will definitely help any shortfall. These grasses are characterized by rapid growth in late spring and summer; they can be used for pasture, green chop, silage, and hay. Forage sorghums, sudangrass, sorghum-sudangrass, hybrids (Sudex), and pearl millet are common summer annual grasses.

A well prepared, firm, moist seedbed is best, although no-till equipment can be used successfully in stubble or grass sods. Two or more seedings may be desired to make rotational grazing management easier. The seed may be broadcast and harrowed or seeded with a grain drill. The seed should be covered 1/4 to 1 inch deep.

Summer annual grasses respond very well to rotational grazing. This management practice increases the quantity and quality of forage harvested. Pearl millet does not have the prussic acid problem, so it can be grazed longer in the fall.

Fertilize with phosphorus and potassium according to soil test. If soil test levels are not known, fertilize as if growing 120-bushel corn. Incorporate these nutrients before seeding.

Nitrogen fertilization is critical to achieve high production. Split applications should be made. Half the nitrogen should be applied and incorporated prior to seeding and the remainder divided equally and applied after each grazing or cutting to make the most efficient use of the nutrient. If the soil is dry, ammonium nitrate is the preferred topdress material. Urea may be used, but it needs to be applied just prior to rainfall or the rate needs to increase by 10-20% to compensate for volatilization losses.