Sex in the Corn Field:
Silk Emergence

R.L. (Bob) Nielsen
Agronomy Dept., Purdue Univ.
West Lafayette, IN 47907-1150
Email address: mailto:rnielsen@purdue.edu

- Corn produces both male and female flowers on the same plant.
- The ear contains the female flowers of the corn plant.
- Severe soil moisture deficits can delay silk emergence and disrupt the synchrony of pollen shed and silk availability, resulting in poor kernel set.

As important as the process of pollination is to the determination of grain yield in corn, it is surprising how little some folks know about the details of sex in the corn field. Rather than leaving you to learn about such things "in the streets", I’ve developed this article and the accompanying one on tassels and anthers that describe the ins and outs of this critical period of the corn plant’s life cycle.

Remember that corn has both male flowers and female flowers on the same plant (a flowering habit called monoecious for you trivia fans.) Interestingly, both flowers are initially bisexual (aka 'perfect'), but during the course of development the female components (gynoecia) of the male flowers and the male components (stamens) of the female flowers abort, resulting in tassel (male) and ear (female) development.

The silks that emerge from the ear shoot are the functional stigmas of the female flowers of a corn plant. Every potential kernel (ovule) on an ear develops its own silk. Each silk must be pollinated in order for the ovule to be fertilized and develop into a kernel. Typically, up to 1000 ovules form per ear, even though we typically harvest only 400 to 600 actual kernels per ear.

Technically, growth stage R1 (Ritchie et al., 1993) for a given ear is defined when even a single silk strand is visible from the tip of the husk. A field is defined as being at growth stage R1 when silks have emerged on at least 50 % of the plants.

Silk Elongation and Emergence

Silks begin to elongate from the ovules about 10 days prior to silk emergence from the husk. Dissection of young developing ears prior to silk emergence from the husk will reveal silk elongation beginning first from the basal ovules of the cob, then proceeding up the ear over time.
In a similar acropetal fashion, silks from the basal (butt) portion of the ear typically emerge first from the husk, while the tip silks generally emerge last. Complete silk emergence from an ear generally occurs within four to eight days after the first silks appear.

As silks first emerge from husk, they lengthen as much as 1-1/2 inches per day for the first day or two, but gradually slow over the next several days. Silk elongation occurs by expansion of existing cells, so elongation rate slows as more and more cells reach maximum size.

Silk elongation stops about 10 days after silk emergence, regardless of whether pollination occurs, due to senescence of the silk tissue. Unusually long silks can be a diagnostic symptom that the ear was not successfully pollinated.

Silks remain receptive to pollen grain germination up to 10 days after silk emergence. After 10 days without being pollinated, silk receptivity decreases rapidly. Natural senescence of silk over time results in collapsed tissue that restricts continued growth of the pollen tube. Silk emergence usually occurs in close synchrony with pollen shed, so that duration of silk receptivity is normally not a concern. Failure of silks to emerge in the first place, however, does not bode well for successful pollination.

Pollination and Fertilization

For those of you serious about semantics, let's review two definitions relevant to sex in the corn field. Pollination is the act of transferring the pollen grains to the silks by wind or insects. Fertilization is the union of the male gametes from the pollen with the female gametes from the ovary. Technically, pollination usually occurs successfully (i.e., the pollen reaches the silks), but unsuccessful fertilization results in poor kernel set on the ears.

Pollen grain germination occurs within minutes after a pollen grain lands on a receptive (moist) silk. A pollen tube, containing the male genetic material, develops and grows inside the silk, and fertilizes the ovary within 24 hours. Pollen grains can land and germinate anywhere along the length of an exposed silk. Many pollen grains can germinate on a receptive silk, but typically only one will successfully fertilize the ovary.

Silk Emergence Failure

Severe Drought Stress. The most common cause of incomplete silk emergence is severe drought stress. Silks have the greatest water content of any corn plant tissue and thus are most sensitive to moisture levels in the plant. Severe moisture deficits will slow silk elongation, causing a delay or failure of silks to emerge from the ear shoot. If the delay is long enough, pollen shed may be almost or completely finished before receptive silks are available; resulting in nearly blank or totally blank cobs. Severe drought stress accompanied by low relative humidity can also desiccate exposed silks and render them unviable to pollen germination.

The severity of drought stress required for significant silk emergence delay or desiccation can probably be characterized by severe leaf rolling that begins early in the morning and continues into the early evening hours. Such severe leaf rolling is often accompanied by a change in leaf color from “healthy” green to a grayish-tinged green that may eventually
die and bleach to a straw color.

Silk Clipping by Insects. Although technically not defined as silk emergence failure, severe silk clipping by insects such as corn rootworm beetle or Japanese beetle nonetheless can interfere with the success of pollination by decreasing or eliminating viable or receptive exposed silk tissue. Fortunately, unless the beetle activity is nonstop for days, continued elongation of silks from the husk will expose undamaged and receptive silk tissue at the rate of about one inch or more per day.

Some Related References:
