Sex in the Corn Field:

Tassel Emergence & Pollen Shed

R.L. (Bob) Nielsen
Agronomy Dept., Purdue Univ.
West Lafayette, IN 47907-1150
Email address: mailto:rnielsen@purdue.edu

- Corn produces both male and female flowers on the same plant.
- The tassel contains the male flowers of the corn plant.

Slowly and surely, the Indiana corn crop is moving into the critical flowering stages of pollen shed and silk emergence. While some early planted corn is already pollinating (9% as of 14 July according to USDA-NASS), much of the state’s crop will pollinate during the next three weeks. Success or failure during this period of the corn plant's life will greatly influence the potential yield at harvest time.

As important as this process is to the determination of grain yield, it is surprising how little some folks know about the whole thing. Rather than leaving you to learn about such things "in the streets", I’ve developed this article and the accompanying one on silking that describe the ins and outs of sex in the corn field.

Remember that corn has both male flowers and female flowers on the same plant (a flowering habit called monoecious for you trivia fans.) Interestingly, both flowers are initially bisexual (aka 'perfect'), but during the course of development the female components (gynoecia) of the male flowers and the male components (stamens) of the female flowers abort, resulting in tassel (male) and ear (female) development.

Technically, growth stage VT occurs when the last branch of the tassel emerges from the whorl (Ritchie et al., 1993). Portions of the tassel may be visible before the maximum leaf stage (final visible leaf collar) has occurred. Plant height is nearly at its maximum at growth stage VT. Pollen shed may begin before the tassel has completely emerged from the whorl.

The corn plant is most vulnerable to hail damage at growth stage VT since all of its leaves have emerged. Complete (100 %) leaf loss at growth stage VT will usually result in complete (100 %) yield loss by harvest. Even if pollination is successful, the ear shoots will usually die because few leaves remain to produce the necessary carbohydrates (by photosynthesis) to complete grain fill.

Between 500 to 1000 spikelets form on each tassel. Each spikelet contains two florets. Each floret contains three anthers. The anthers are those ‘thingamajigs’ that hang from
the tassel during pollination. Under a magnifying lens, anthers look somewhat like the double barrel of a shotgun.

As these florets mature, anthers emerge from the glumes and pollen is dispersed through pores that open at the tips of the anthers. Pollen shed usually begins in the mid-portion of the central tassel spike and then progresses upward, downward and outward over time. Anthers typically emerge from the upper flower first, while those from lower flower typically emerge later the same day or on following days. Spent anthers eventually drop from the tassel and are sometimes mistaken for the pollen itself when observed on the leaves or ground.

The yellow 'dust-like' pollen that falls from a tassel represents millions of individual, nearly microscopic, spherical, yellowish- or whitish translucent pollen grains. Each pollen grain contains the male genetic material necessary for fertilizing the ovary of one potential kernel.

The outer membrane of a pollen grain is very thin. Once dispersed into the atmosphere, pollen grains remain viable for only a few minutes before they desiccate. Yet, with only a 15 mph wind, pollen grains can travel as far as ½ mile within those couple of minutes.

Therein lies the concern of the potential for pollen ‘drift’ from a transgenic corn field to an adjacent non-transgenic corn field and the risk of transgenic ‘contamination’ of grain intended for non-transgenic sale. The good news is that recent research suggests that the overwhelming majority of a corn field’s pollen load is shed in the field itself.

All of the pollen from a single anther may be released in as little as three minutes. All the anthers on an individual tassel may take as long as seven days to finish shedding pollen, although the greatest volume of pollen is typically shed during the second and third day of anther emergence. Because of natural field variability in plant development, a whole field may take as long as 14 days to complete pollen shed.

Peak pollen shed usually occurs in mid-morning. Some research indicates that pollen shed decreases after temperatures surpass 86F. A second 'flush' of pollen often occurs in late afternoon or evening as temperatures cool. Pollen shed may occur throughout most of the day under relatively cool, cloudy conditions.

Weather conditions influence pollen shed. If the anthers are wet, the pores will not open and pollen will not be released. Thus, on an average Indiana summer morning following a heavy evening dew, pollen shed will not begin until the dew dries and the anther pores open. Similarly, pollen is not shed during rainy conditions. Cool, humid temperatures delay pollen shed, while hot, dry conditions hasten pollen shed.

Extreme heat stress (100 F or greater) can kill corn pollen, but fortunately the plant avoids significant pollen loss by virtue of two developmental characteristics. First of all, corn pollen does not mature or shed all at once. Pollen maturity and shed occur over several days and up to two weeks. Therefore, a day or two of extreme heat usually does not affect the entire pollen supply. More importantly, the majority of daily pollen shed occurs in the morning hours when air temperature is much more moderate.

Some Related References:

Don't forget, this and other timely information about corn can be viewed at the Chat 'n Chew Café on the World Wide Web at http://www.kingcorn.org/cafe . For other information about corn, take a look at the Corn Growers' Guidebook on the World Wide Web at http://www.kingcorn.org/

© 2002, Purdue University