Key Crop Management Issues for Optimizing Grain Yield & Quality

R.L. (Bob) Nielsen
Agronomy Department
Purdue University, Indiana, U.S.
Email: nielsen@purdue.edu
Web: www.kingcorn.org/rln-bio.htm

Links to this presentation can be found under “Presentations & Papers”

It’s still winter in Indiana...

Low temp Jan 27 = -24°C

Major Indiana crops:

- Maize: 2.19 million hectares
- Soybean: 2.35 million hectares
- Hay: 0.24 million hectares
- Wheat: 0.14 million hectares

Source: Indiana Agricultural Statistics Service

Current state yield estimate:

- Current estimate of 7.6 ton/ha is about 14% below historical trend yield of 8.8 ton/ha (140 bu/ac).
 - Wet spring, delayed planting
 - Soil compaction
 - Subsequent dry weather

~ 7.6 ton/ha in 2002 vs. ~ 9.8 ton/ha in 2001
Maize yield and grain quality

- Both are important goals of maize production.
- Both are influenced by your management decisions and an array of other yield influencing factors (YIFs).
- Spatial & temporal consistency of optimum yield and quality requires a combination of good agronomic management on your part and good luck.

Skill versus luck?

- Sound agronomic skills & knowledge will help you...
 - Identify negative and positive YIFs
 - Develop strategies to mitigate or prevent negative YIFs and enhance or promote positive YIFs.
- Plenty of luck is required if the important YIFs are unknown, unidentified, or not quantified.

Yield influencing factors

- Crops are influenced by vast array of yield influencing factors (YIFs)
 - Some influence yield directly
 - Some interact with others
 - Some occur every year, others do not
 - Some influence different crops differently
 - Weather interacts with most of them

Perennial' YIFs

- Spatial variability for some yield influencing factors is reasonably constant from year to year.
 - Soil fertility or pH patterns
 - Soil drainage patterns
 - Patterns of perennial weed growth

'Sporadic' YIFs

- Other yield influencing factors occur sporadically over the years...
 - Diseases & insects, even fertility problems are greatly dependent on weather
 - 'Abnormal' weather seems to be the norm!
- Site-specific technology can help identify these problems when they occur, but not necessarily prevent their reoccurrence.

Which YIFs Are Most Important?

- Always Remember: Stress upon stress reduces the crop’s ability to tolerate more stress.
Key Crop Management Issues for Optimizing Grain Yield & Quality

Agronomic choices abound...
- Tillage type and timing
- Hybrid type
- Seeding rate
- Planting date
- Row spacing
- Fertilizer type, appl’n timing, placement
- Insect control
- Weed control
- Crop rotation
- Disease control
- Irrigation amount and timing
- Harvest timing rel. to grain moisture, mechanical kernel damage, and mechanical harvest loss

Key agronomic practices?
- Rather than identifying specific practices for maximizing yields consistently...
- ...you need to understand key agronomic concepts related to optimum yields...
- ...then seek practices that are available and adaptable to your specific situations (YIFs).

> I cannot give you a list of specific practices to optimize your maize yields because I am nearly clueless about Australian YIFs for maize.

Hybrid performance...
- High-yielding hybrids well-adapted to YIFs common in your farming operation.
- Look for hybrids that yield consistently well across a diverse set of conditions in your area, especially weather and disease.
- Requires comparative hybrid performance data across multiple locations, not simply performance on your farm.

Hybrid Selection Strategy:
- Eliminate hybrids with weaknesses for specific traits important to your farming operation.
 - e.g., specific disease tolerance, root & stalk strength, emergence vigor, etc.
 - Info about hybrid characteristics can be found on many seed company Web sites.

Links to Seed Company Web Sites:
- http://www.agry.purdue.edu/links/national/commercial-ag.htm

Successful stand establishment...
- Rapid & uniform stand establishment
 - Germination & emergence
 - Establishment of nodal root system
 - Minimizes duration of exposure to pest & weather stresses while young plants are dependent on kernel reserves.
 - Increases ability to tolerate later stresses.

Important factors for...
- Excellent seed quality
 - Indicated by warm or cold germination ratings
- Excellent genetic seedling vigor
- Company ratings
- Seed protection from insects or diseases
- Seed treatments
- Surface soil free of crust or compaction
- Availability of soil nutrients
- Starter fertilizer (esp N)
- Error-free seeding
- Planter maintenance
- Planter adjustments
- Planting speed
- Adequate & uniform
- Soil temperatures
- Soil moisture
- Seed-soil contact
Key Crop Management Issues for Optimizing Grain Yield & Quality

Construction of “factory”…
- Vigorous growth between “knee-high” and pollination (“grand growth period”).
 - Ensures successful ear size determination.
 - Completes establishment of whole root system.
- Aim for maximum canopy development by at least two weeks prior to flowering.
 - Ensures nearly complete interception of solar radiation during pollination and grain fill.
- Rooting profile free of soil compaction or other rooting restrictions.
 - Minimal stress from moisture deficits.
 - Stored soil moisture
 - Rainfall
 - Irrigation
 - Moisture conservation by zero tillage
- Availability of soil nutrients (esp N).
 - Seedling rates & row spacing sufficient to achieve full canopy closure 2 weeks prior to pollination.
 - Indiana: 74,000/ha and 76-cm row spacing
 - Minimal competition from weeds, insects, or diseases
- Minimal stress throughout grain fill.
 - Ensures max. kernel weight.
 - Ensures max. grain quality.
 - Minimizes risk of root and stalk rot development.
- Moderate day/night temperatures (30/18°C).
 - Plenty of solar radiation.
 - Minimal interference of pollination by silk clipping insects.
- Healthy crop canopy able to intercept 95% or more solar radiation.
 - Pollination & grain fill…
 - Successful pollination and early grain fill.
 - Ensures maximum kernel set on ears.
 - Minimizes abortion risk.
 - Minimal stress throughout grain fill.
 - Ensures max. kernel weight.
 - Ensures max. grain quality.
 - Minimizes risk of root and stalk rot development.
- Minimal stress from moisture deficits.
 - Stored soil moisture
 - Rainfall
 - Irrigation
 - Moisture conservation by zero tillage
 - Moderate day/night temperatures (30/18°C).
 - Plenty of solar radiation.
 - Minimal interference of pollination by silk clipping insects.
 - Rooting profile free of soil compaction or other rooting restrictions.
 - Healthy crop canopy able to intercept 95% or more solar radiation.

Harvest of crop…
- Physiological maturity occurs at ~ 30% GMC.
 - Corresponds to kernel black layer development.
- Timely harvest of crop.
 - Balance between kernel damage from harvesting excessively wet grain (mid- to high 20’s) and mechanical harvest loss from harvesting excessively dry grain (mid-teens).
- Optimal grain moisture content?
 - Low 20’s considered to be GMC for optimum combine efficiency.
 - Least kernel damage
 - Least mechanical harvest loss.
- Some research suggests possibility of kernel dry matter loss in mature corn grain as it continues to dry naturally in the field.
 - As great as 1% per point of GMC.
- Strategic harvest of crop.
 - Minimize consequences of stalk rots or insect-damage by strategically harvesting severely affected fields early.
Base agronomic decisions on...

- Intimate knowledge of your own farming system and yield influencing factors.
- Thorough and timely crop record keeping
- Crop scouting and monitoring (YIF identification)
- Major soil types & their characteristics
- Climatic factors, especially water availability
- Historical yield data on field basis
- Historical yield monitor data on site-specific basis

Key word is “relevant”:
What works in Indiana will not necessarily work in QLD or NSW.

Sources of information...

- KingCorn – The Corn Grower’s Guidebook
 - Corn production information from throughout the U.S.
 - www.kingcorn.org
- Agronomic Links Across the Globe
 - Links to useful sites from all over the world
 - www.agry.purdue.edu/links
- Corn Growth & Development: What Goes On From Planting to Harvest?

Corn for dry milling...

- Desired kernel characteristics for flaking grits include...
 - Harder endosperm
 - Hybrid selection
 - Larger-sized kernels
 - Hybrid selection, lower plant density, minimal stress during grain fill

Uniform kernel size
- Uniform stand establishment
- Minimal stress during pollination & early kernel development
- Few kernel stress cracks
- Minimal stress during grain fill
- Lower temp drying
- Higher protein contents
- Hybrid selection, N fertilization, yield level

Example of Understanding End Use Characteristics:

Desired kernel characteristics for flaking grits include...

Uniform kernel size
- Uniform stand establishment
- Minimal stress during pollination & early kernel development
- Few kernel stress cracks
- Minimal stress during grain fill
- Lower temp drying
- Higher protein contents
- Hybrid selection, N fertilization, yield level

Base agronomic decisions on...

- Intimate knowledge of own farming system and yield influencing factors
- Quality requirements of grain buyer and end-user markets
 - Protein, oil, endosperm (starch) characteristics, kernel integrity (disease, stress cracks, etc.), transgenic acceptance.
 - Work closely with your grain buyer to identify desired characteristics.

Post Harvest Grain Quality & Stored Product Protection Program
 - pastur.ecn.purdue.edu/~grainlab/

Quality Grain Needs TLC
 - www.agcom.purdue.edu/AgCom/Pubs/GQ/GQ-23.html

Stand Establishment Uniformity
 - www.agry.purdue.edu/ext/pubs/AGRY-91-01_v5.pdf

Corn Quality for Industrial Uses (Univ. of Nebraska):
 - http://www.ianr.unl.edu/pubs/fieldcrops/g1115.htm

Example of Understanding End Use Characteristics:

Desired kernel characteristics for flaking grits include...

Uniform kernel size
- Uniform stand establishment
- Minimal stress during pollination & early kernel development
- Few kernel stress cracks
- Minimal stress during grain fill
- Lower temp drying
- Higher protein contents
- Hybrid selection, N fertilization, yield level

Key word is “relevant”:
What works in Indiana will not necessarily work in QLD or NSW.

Sources of information...

- KingCorn – The Corn Grower’s Guidebook
 - Corn production information from throughout the U.S.
 - www.kingcorn.org
- Agronomic Links Across the Globe
 - Links to useful sites from all over the world
 - www.agry.purdue.edu/links
- Corn Growth & Development: What Goes On From Planting to Harvest?

© 2003, Purdue Univ.
Key Crop Management Issues for Optimizing Grain Yield & Quality

Sources of information...
- Pioneer Hi-Bred Int’l Agronomy & Nutrition
 - www.pioneer.com/usa/agronomy/index.htm
- Maize Assoc. of Australia
- New South Wales Agriculture
- Grains Research & Development Corp.
- Corn Quality for Industrial Uses (Univ. of Nebraska).
 - www.ianr.unl.edu/pubs/fieldcrops/g1115.htm
- Intrinsic Value of Nebraska Corn: 1995 Crop Year Report (Univ. of Nebraska)
 - foodsci.unl.edu/OnlineEdu/Grains/CORN1995.html

Hungry for More?
- Check out one of these fine Web sites...
 - Welcome to ...
 - KingCorn.org
 - The Corn Growers’ Guidebook
 - Chat ‘n Chew Café
 - Where the coffee is strong
 - and the gossip is fresh!
 - http://www.kingcorn.org/cafe

A Final Thought...
"Farming is a kind of continual miracle wrought by the hand of God."
-- Benjamin Franklin