Key Crop Management Issues for Optimizing Grain Yield & Quality

R.L. (Bob) Nielsen
Agronomy Department
Purdue University, Indiana, U.S.

Email: rnielsen@purdue.edu
Web: www.kingcorn.org/rln-bio.htm

Links to this presentation can be found under “Presentations & Papers”
Purdue Univ., Indiana, USA

- Total: 9.37 million hectares
- Arable: 6.12 million hectares
It’s still winter in Indiana...

Low temp Jan 27 = -24°C
Major Indiana crops:

- Maize: 2.19 million hectares
- Soybean: 2.35 million hectares
- Hay: 0.24 million hectares
- Wheat: 0.14 million hectares

Source: Indiana Ag. Statistics Serv.
Source: http://www.nass.usda.gov/in/pressrel/pr011003.txt
Maize land area...

Australia vs. Top 3 Indiana Counties

| Thousand hectares | 82 | 59.5 | 54.2 | 51.8 |

Sources: Australian Bureau of Statistics & USDA-Nat'l Ag Statistics Service

Image source: USDA
Indiana maize:

Current state yield estimate:

- Current estimate of 7.6 ton/ha is about 14% below historical trend yield of 8.8 ton/ha (140 bu/ac).
 - Wet spring, delayed planting
 - Soil compaction
 - Subsequent dry weather

~ 7.6 ton/ha in 2002 vs. ~ 9.8 ton/ha in 2001
Maize yield and grain quality

- Both are important goals of maize production.
- Both are influenced by your management decisions and an array of other yield influencing factors (YIFs).
- Spatial & temporal consistency of optimum yield and quality requires a combination of good agronomic management on your part and good luck.
Skill versus luck?

- Sound agronomic skills & knowledge will help you...
 - Identify negative and positive YIFs
 - Develop strategies to mitigate or prevent negative YIFs and enhance or promote positive YIFs.

- Plenty of luck is required if the important YIFs are unknown, unidentified, or not quantified.
Yield influencing factors

- Crops are influenced by vast array of yield influencing factors (YIFs)
 - Some influence yield directly
 - Some interact with others
 - Some occur every year, others do not
 - Some influence different crops differently
 - Weather interacts with most of them

Identifying YIFs can be difficult...
‘Perennial’ YIFs

- Spatial variability for some yield influencing factors is reasonably constant from year to year.
 - Soil fertility or pH patterns
 - Soil drainage patterns
 - Patterns of perennial weed growth
- These patterns can be described with site-specific technology and consequently used for YIF management.
‘Sporadic’ YIFs

- Other yield influencing factors occur sporadically over the years...
 - Diseases & insects, even fertility problems are greatly dependent on weather
 - ‘Abnormal’ weather seems to be the norm!
- Site-specific technology can help identify these problems when they occur, but not necessarily prevent their reoccurrence.
Which YIFs Are Most Important?

Always Remember:
Stress upon stress reduces the crop’s ability to tolerate more stress.
Agronomic choices abound…

- Tillage type and timing
- Hybrid type
- Seeding rate
- Planting date
- Row spacing
- Fertilizer type, appl’n timing, placement
- Insect control
- Weed control
- Crop rotation
- Disease control
- Irrigation amount and timing
- Harvest timing rel. to grain moisture, mechanical kernel damage, and mechanical harvest loss
Key agronomic practices?

- Rather than identifying specific practices for maximizing yields consistently...
 - ...you need to understand key agronomic concepts related to optimum yields...
 - ...then seek practices that are available and adaptable to your specific situations (YIFs).

I cannot give you a list of specific practices to optimize your maize yields because I am nearly clueless about Australian YIFs for maize.
Hybrid performance...

- High-yielding hybrids well-adapted to YIFs common in your farming operation.
- Look for hybrids that yield consistently well across a diverse set of conditions in your area, especially weather and disease.
- Requires comparative hybrid performance data across multiple locations, not simply performance on your farm.

Northcentral U.S. Hybrid Performance Data:
http://www.ksu.edu/kscpt/nccec/
After identifying hybrids...

- Eliminate hybrids with weaknesses for specific traits important to your farming operation.
 - e.g., specific disease tolerance, root & stalk strength, emergence vigor, etc.
 - Info about hybrid characteristics can be found on many seed company Web sites.

Links to Seed Company Web Sites:
http://www.agry.purdue.edu/links/national/commercial-ag.htm
Successful stand establishment...

- Rapid & uniform stand establishment
 - Germination & emergence
 - Establishment of nodal root system
 - Minimizes duration of exposure to pest & weather stresses while young plants are dependent on kernel reserves.
 - Increases ability to tolerate later stresses.
Successful stand establishment...

- Excellent seed quality
 - Indicated by warm or cold germination ratings
- Excellent genetic seedling vigor
 - Company ratings
- Seed protection from insects or diseases
 - Seed treatments
- Surface soil free of crust or compaction

- Availability of soil nutrients
 - Starter fertilizer (esp N)
- Error-free seeding
 - Planter maintenance
 - Planter adjustments
 - Planting speed
- Adequate & uniform
 - Soil temperatures
 - Soil moisture
 - Seed-soil contact
Key Agronomic Concepts

Construction of “factory”...

- Vigorous growth between “knee-high” and pollination (“grand growth period”).
 - Ensures successful ear size determination.
 - Completes establishment of whole root system.
- Aim for maximum canopy development by at least two weeks prior to flowering.
 - Ensures nearly complete interception of solar radiation during pollination and grain fill.
Construction of “factory”...

- Rooting profile free of soil compaction or other rooting restrictions.
- Minimal stress from moisture deficits.
 - Stored soil moisture
 - Rainfall
 - Irrigation
 - Moisture conservation by zero tillage
- Availability of soil nutrients (esp N).
- Seeding rates & row spacing sufficient to achieve full canopy closure 2 weeks prior to pollination.
 - Indiana: 74,000/ha and 76-cm row spacing
- Minimal competition from weeds, insects, or diseases
Pollination & grain fill...

- Successful pollination and early grain fill.
 - Ensures maximum kernel set on ears.
 - Minimizes abortion risk.

- Minimal stress throughout grain fill.
 - Ensures max. kernel weight.
 - Ensures max. grain quality.
 - Minimizes risk of root and stalk rot development.
Important factors for...

Pollination & grain fill...

- Minimal stress from moisture deficits.
 - Stored soil moisture
 - Rainfall
 - Irrigation
 - Moisture conservation by zero tillage
- Moderate day/night temperatures (30/18C).
- Plenty of solar radiation.
- Minimal interference of pollination by silk clipping insects.
- Rooting profile free of soil compaction or other rooting restrictions.
- Healthy crop canopy able to intercept 95% or more solar radiation.
Harvest of crop...

- **Physiological maturity** occurs at ~ 30% GMC.
 - Corresponds to kernel black layer development.

- **Timely harvest of crop.**
 - Balance between kernel damage from harvesting excessively wet grain (mid- to high 20’s) and mechanical harvest loss from harvesting excessively dry grain (mid-teens).

- **Strategic harvest of crop.**
 - Minimize consequences of stalk rots or insect-damage by strategically harvesting severely affected fields early.
Important factors for...

Harvest of crop...

- Optimal grain moisture content?
 - Low 20’s considered to be GMC for optimum combine efficiency.
 - Least kernel damage
 - Least mechanical harvest loss.

- Some research suggests possibility of kernel dry matter loss in mature corn grain as it continues to dry naturally in the field.
 - As great as 1% per point of GMC.
Base agronomic decisions on...

- Intimate knowledge of your own farming system and yield influencing factors.
 - Thorough and timely crop record keeping
 - Crop scouting and monitoring (YIF identification)
 - Major soil types & their characteristics
 - Climatic factors, especially water availability
 - Historical yield data on field basis
 - Historical yield monitor data on site-specific basis
Base agronomic decisions on...

- Intimate knowledge of own farming system and yield influencing factors
- Quality requirements of grain buyer and end-user markets
 - Protein, oil, endosperm (starch) characteristics, kernel integrity (disease, stress cracks, etc.), transgenic acceptance.
 - Work closely with your grain buyer to identify desired characteristics.
Corn for dry milling...

- Desired kernel characteristics for flaking grits include...
 - Harder endosperm
 - Hybrid selection
 - Larger-sized kernels
 - Hybrid selection, lower plant density, minimal stress during grain fill

- Uniform kernel size
 - Uniform stand establishment
 - Minimal stress during pollination & early kernel development

- Few kernel stress cracks
 - Minimal stress during grain fill
 - Lower temp drying

- Higher protein contents
 - Hybrid selection, N fertilization, yield level

Corn Quality for Industrial Uses (Univ. of Nebraska):
http://www.ianr.unl.edu/pubs/fieldcrops/g1115.htm
Base agronomic decisions on...

- Intimate knowledge of own farming system and yield influencing factors
- Quality requirements of grain buyer and end-user markets

Solid understanding of...

- Fundamental agronomic principles
- Crop growth & development
- Latest relevant (climate, soil, YIFs) research

Key word is “relevant”:

What works in Indiana will not necessarily work in QSLD or NSW.
Sources of information...

- **KingCorn – The Corn Growers’ Guidebook**
 - Corn production information from throughout the U.S.
 - www.kingcorn.org

- **Agronomic Links Across the Globe**
 - Links to useful sites from all over the world
 - www.agry.purdue.edu/links

- **Corn Growth & Development: What Goes On From Planting to Harvest?**
Sources of information...

- Post Harvest Grain Quality & Stored Product Protection Program
 - pasture.ecn.purdue.edu/~grainlab/

- Quality Grain Needs TLC
 - www.agcom.purdue.edu/AgCom/Pubs/GQ/GQ-23.html

- Stand Establishment Uniformity
 - www.agry.purdue.edu/ext/pubs/AGRY-91-01_v5.pdf
Sources of information…

- Pioneer Hi-Bred Int’l Agronomy & Nutrition
 - www.pioneer.com/usa/agronomy/index.htm
- Maize Assoc. of Australia
- New South Wales Agriculture
- Grains Research & Development Corp.
Sources of information...

- Corn Quality for Industrial Uses (Univ. of Nebraska).
 - www.ianr.unl.edu/pubs/fieldcrops/g1115.htm

- Intrinsic Value of Nebraska Corn: 1995 Crop Year Report (Univ. of Nebraska)
 - foodsci.unl.edu/OnlineEdu/Grains/CORN1995.html
Hungry for More?

- Check out one of these fine Web sites...

[KingCorn.org]

[Chat 'n Chew Café]
Where the coffee is strong and the gossip is fresh!

http://www.kingcorn.org/cafe
A Final Thought...

“Farming is a kind of continual miracle wrought by the hand of God.”

-- Benjamin Franklin