Developments in Agronomy & Maize Management

R.L. (Bob) Nielsen
Agronomy Department
Purdue University, Indiana, U.S.

Email: rnielsen@purdue.edu
Web: www.kingcorn.org/rln-bio.htm

Links to this presentation can be found under “Presentations & Papers”
It’s still winter in Indiana...

Low temp Jan 27 = -24°C
Outline

- Weed management
 - HT varieties
 - HR weeds
- Insect management
 - Bt rootworm
 - Seed protectants
- Specialty traits & I-P
 - Transgenics
 - Specialty output traits
- Site-specific crop management
 - Opportunities
 - Challenges
Herbicide resistant weeds...

- Documented cases of weed resistance to herbicides becoming more common in the U.S. Midwest.
 - Resistance occurs naturally in some weed populations.
 - Resistance encouraged by overuse of single chemistry herbicides on multiple crops.
- Management involves use of multiple herbicide chemistries, appl’n timing, & tillage where appropriate.
Examples of HR weeds...

- **Triazines**
 - Lambsquarter (*Chenopodium album*)
 - Pigweed (*Amaranthus spp.*)

- **ALS inhibitors**
 - Ragweed (*Ambrosia spp.*)
 - Marestail (*Conyza canadensis*)
 - Waterhemp (*Amaranthus tuberculatus*)

- **Glyphosate**
 - Marestail
 - Waterhemp

Excellent Weed Web Site:
www.weeds.iastate.edu/
Insect management...

- **Transgenic insecticidal traits**
 - Transgenic Bt hybrids for control of European corn borer (*Ostrinia nubilalis*) have been available since mid-90’s.
 - Herculex™ I Bt trait now available from Pioneer® that offers addn’l control for black cutworm (*Agrotis ipsilon*) and fall armyworm (*Spodoptera frugiperda*).
 - Both Monsanto® and Pioneer® hoping to commercialize Bt hybrids for control of corn rootworm (*Diabrotica* spp.).
U.S. transgenic maize acreage, 2002

- **Minnesota**: 29% Bt, 11% Herb. tol., 9% Stacked
- **Nebraska**: 34% Bt, 9% Herb. tol.
- **Iowa**: 31% Bt, 7% Herb. tol.
- **Illinois**: 18% Bt, 3% Herb. tol.
- **Indiana**: 7% Bt, 7% Herb. tol.
- **U.S.**: 22% Bt, 9% Herb. tol.

Source: http://jan.mannlib.cornell.edu/reports/nassr/field/pcp-bba/acrg0602.txt
Western corn rootworm

- One of Indiana’s most worrisome maize pests.
- Larvae feed on maize roots, causing physiological injury and weakened root systems.
- Beetles feed on pollen and clip silks in the process, interfering with pollination.
- Demand for Bt rootworm hybrids will be great in Indiana in contrast to that for Bt ECB hybrids.
Seed protectants…

- **Gaucho® seed insecticide treatment**
 - Imidacloprid (www.gustafson.com)
 - Targets wireworm, seedcorn maggot, flea beetles, white grubs
- **Cruiser® seed insecticide treatment**
 - Thiamethoxam (www.syngenta.com)
 - Targets wireworm, flea beetles, aphids, leaf miners
- Such protectants will likely be standard seed treatments for Bt rootworm hybrids.
Other specialty markets...

- **Historical markets**
 - Popcorn, seed corn, waxy starch, white & yellow food grade corn

- **Potential specialty traits**
 - Alternative starches, industrial enzymes, pharmaceuticals, nutritional

- **Potential niche corn types**
 - Baby corn, Indian corn, blue corn, edible corn smut

- **Vertically integrated markets**
 - Seed >> Production >> Processing >> Product
Identity-Preservation (I-P)...

One of the natural consequences of expanding into specialty markets is the requirement for I-P strategies that ensure the purity of the grain product from farm to end-user.

- Transgenic crop production in general
- Specialty output traits
I-P challenges: Farmers

- Purity of purchased seed
- Hygiene of planting & harvesting op’s
- Pollen drift among adjacent maize fields
- Grain commingling during drying, storage, and transport of grain after harvest
- Extra costs associated with I-P strategies vs. premiums received for sale of grain
I-P challenges: Grain buyers

- Grain commingling during receiving, drying, storage, outloading, & transport.
- Increased need for multiple grain handling facilities to accommodate multiple I-P crop grain programs.
- Extra costs associated with I-P requirements, including employee training and premiums paid to grower for specialty trait itself.
Site-specific crop management

- The availability of GPS-enabled technologies offers the opportunity to identify and manage YIFs on a site-specific scale.
 - Mitigate negative YIFs to increase yield.
 - Enhance positive YIFs to increase yield.
Availability of technology

- GPS-enabled tools and technologies have been available to U.S. grain & oilseed farmers for about 12 years.
 - Initially, yield monitors & VR fertilizer
- Realistically, technology adoption has occurred slowly among farmers.
 - Some contend that adoption is currently at a plateau.
Adoption of technology

- Yield monitors are the primary GPS-enabled equipment owned by farmers.
 - Used on about 30% of planted maize acres.
 - Though, half or less are estimated to be GPS-enabled and capable of yield mapping.
- Intensive soil sampling, VR lime and VR plowdown P & K are the primary dealer services used by farmers.
 - Some offer VR herbicide or fertilizer N
GPS-enabled technologies...

- DGPS receivers
- Grain yield monitors
- VR controllers for
 - Lime, fertilizers, pesticides, & seeding rates
- Aerial & satellite imagery
- Guidance systems
 - Parallel swathing
 - Automated navigation
- Instruments for measuring soil EC
 - Veris®, Geonics®
- Laser-assisted survey instruments for measuring topography
- Hardware & software for GIS crop scouting
- Software for GIS data analyses
GPS-enabled operations (I)

- Grain yield & moisture mapping
- Intensive soil nutrient sampling
- Land feature mapping
 - Topography (laser-guided)
 - Soil electrical conductivity
 - Tile drainage lines
 - Waterways & streams
 - Soil types (Order 1)
GPS-enabled operations (II)

- Crop scouting & monitoring
 - Plant population & uniformity
 - Weed ID, location & populations
 - Insect ID, location & populations
 - Nutrient deficiencies
 - Crop health & vigor

Green vegetation index (NDVI) from IR aerial image (8 July)
GPS-enabled operations (III)

- Guidance systems
 - Accuracy of fertilizer & pesticide appl’ns
- Aerial imagery
 - View from above is a first for some growers
 - Can assist in developing management zones
 - Crop “vigor” monitoring
SSCM Opportunities

- Improved and/or more consistent ...
 - Grain yield
 - Grain quality
- Lower per unit cost of production
 - Improved input use efficiency
 - Fewer overall crop inputs

Image source: http://nzcpa.org.nz/research-ag_tools.html
SSCM Opportunities (II)

- More detailed cropping records
 - Improved budget-making
 - Regulatory requirements
- Less environmental impact
 - Fewer overall pesticide or fertilizer inputs
 - “Wiser” placement or positioning of pesticide or fertilizer inputs
SSCM Challenges

- Costs of technologies relative to other costs & market price received
 - Production costs & gross returns are already close to breakeven today.
 - Some feel the additional costs of GPS-enabled technologies will not return a profit.
 - Recent Ohio State Univ. farmer survey ...
Benefits vs. costs

Adopting Farmers' Perceptions

Do PF benefits clearly exceed costs?

SSCM Challenges (II)

- Limitations of the equipment
 - The GPS “toys” are fun, but in reality are not quite good enough yet
 - Nor can most be characterized as being “off the shelf” ready to go

- Limitations of software
 - Most affordable programs are weak in ability to integrate data and analyze spatial interrelations
 - Neither can most software be characterized as being “off the shelf” ready to go
SSCM Challenges (III)

Influence of “Mother Nature”

- Most research confirms that, for maize and soybean, temporal yield variability is much greater than spatial variability.
- Spatial variability that is not consistent in its temporal pattern is very difficult to manage with SSCM strategies.
SSCM Challenges (IV)

- Limitations imposed by sparse data sets on computer interpolation
 - Data collected by field scouting, including soil nutrient sampling, often too sparse for affordable GIS programs to accurately estimate spatial relationships
 - Yet, more intensive data collection is often cost-prohibitive
SSCM Summary (I)

- Technology is available
 - Not always easy to learn
 - Not always affordable
 - Not always ‘fancy enough’
SSCM Summary (II)

SSCM opportunities

- Increased/more consistent grain yield
- Increased/more consistent grain quality
- Less environmental impact
- Better crop record keeping
SSCM Summary (III)

- SSCM challenges
 - Cost/benefit of technology
 - Limitations of equipment
 - Limitations of software
 - Influence of ‘Mother Nature’
 - Limitations of sparse data sets
A Final Thought...

“Farming is a kind of continual miracle wrought by the hand of God.”

-- Benjamin Franklin