Stalk Rots & Lodging in Corn

Bob Nielsen
Purdue University
Email: rnielsen@purdue.edu
Web: www.kingcorn.org

Image source: Nielsen, Purdue Univ.

(c) 2001 Purdue University
Outline

- Methods of infection
- Fungal causes
- Relationship with plant stresses
- Ways to minimize stalk rot risk

Acknowledgements:
G. Shaner, Purdue Univ.
L. Sweets, Univ. of Missouri
P. Lipps, Ohio State Univ.
G. Munkvold, Iowa State Univ.
Several fungi often involved

- All are part of the complex of microorganisms in the soil that decompose dead plant material.
- Survive from one season to the next in
 - The soil, or
 - Infested corn plant residues
Entry into the corn plant

- Fungal spores blown into base of leaf sheath germinate and grow directly into the stalk tissue
- Fungal spores enter directly through wounds (hail, ECB, mechanical injury)
- Infect root system directly, causing root rot, later stalk rot

Image source: Nielsen, Purdue Univ.
Fungal causes

- **Anthracnose** (*Colletotrichum*)
 - Usually most evident at stalk nodes
 - Lesions initially tan to reddish-brown, but become shiny black later in the season
 - Stalk pith may also be discolored and may disintegrate later in the season
 - Often also associated with ‘top die-back’ of corn plants during grain filling period.

Image source: Yang & Munkvold, Iowa State Univ.
Fungal causes (II)

- Fusarium & Gibberella
 - Similar in-field symptoms
 - Pink to red discoloration of diseased tissue
 - Small amounts of white mycelium may be visible at diseased nodes
 - Stalk pith usually shredded & discolored

(c) 2001 Purdue University

Image source: Nielsen, Purdue Univ.
Fungal causes (III)

- **Diplodia**
 - Begins as brown to tan internode discoloration
 - Stalk pith disintegrates, leaving only the vascular tissues
 - Mats of white fungal growth often visible on diseased plant tissue
 - Small black fruiting bodies may be evident
 - Last year’s ear rot outbreak left a lot of inoculum for this year.
A disease of ‘old age’

- Fungi typically don’t infect corn at early stages of development.
 - Yet, fungi are present in soil and plant residues 12 months out of the year.
- Rather, develop at mid-to late grain fill stages
 - Early August to early September
Why ‘old age’ disease?

- Young, healthy roots and stalks are fairly resistant to fungal infection.
- Susceptibility to rots increases as ...
 - Cell maintenance & repair diminishes due to lack of carbohydrate replenishment
 - Carbohydrates remobilize from stalk tissue to fulfill demands of developing ear
 - The incidence of both increases during the course of grain fill
Carbohydrate availability

- For most of today’s corn hybrids, the carbohydrates necessary for the grain filling process are manufactured ‘on the fly’ by photosynthesis.

- If the photosynthetic ‘factory’ is hindered by plant stresses, carbohydrate output will also be restricted.
Photosynthetic stresses

- Any plant stress occurring any time during the season can affect the photosynthetic productivity of the plant ‘factory’ during grain fill.
 - But, especially stresses that occur during the grain fill, including
 - Hail, leaf diseases, cloudy conditions, soggy soils, dry soils, extreme heat, nutrient deficiencies, ECB or SWCB infestation
Plant’s response to stress?

- When the carbohydrate demands of the plant cannot be met by the photosynthetic output of the ‘factory’,
 - Developing ears take priority and root & stalk cell maintenance suffers
 - Fungal infection of roots (root rots) soon follows
 - Plant may cannibalize carbohydrate reserves stored in lower stalk tissue.
Cannibalization

- Refers to the remobilizing of stored carbohydrates from stalk tissues and transport to the developing ear.
 - Weakens the physical integrity of stalk
 - Increases susceptibility to stalk rots
- Especially likely when plant stresses occur
 - From early to mid-grain fill and/or
 - When potential ear size (yield) is large
Plant stresses this year?

- Excessively dry soils at times
- Excessively wet soils at times
- Periods of cloudy weather
- European or SW Corn Borer infestations
- Some leaf diseases, especially late
 - GLS, anthracnose, NCLB
- High yield potential itself
Good corn yields this year?

- Highest statewide yields ever!

Indiana Corn Grain Yield Since 1930

Data Source: Indiana Agricultural Statistics Service

\[y = 1.6237x - 3109.2 \]
\[R^2 = 0.892 \]

Trend line yield for 2001 = 138.6 bu/ac
Est. yield for 2001 = 160 bu/ac (as of Oct 1)
Minimizing risk of stalk rots

- Hybrid selection
 - ‘Stay-green’ trait infers less cannibalization
 - Stalk strength characteristics
 - Disease tolerance, esp. leaf diseases
 - Bt trait where ECB or SWCB are prevalent
 - Stress tolerance in general
 - Avoid excessively high populations
Minimizing risk of stalk rots

- Minimize risk of stress
 - Always use best agronomic practices
 - Avoid/alleviate soil compaction
 - Avoid nutrient deficiencies
 - Attend church regularly!

- Avoid continuous corn rotation
 - Residue conducive for inoculum developpmt

- Use tillage where appropriate
 - Esp. helps avoid diplodia and anthracnose
Late-season scouting

- Beginning in early August, scout fields or areas within fields that are likely to be at high risk for stalk rots
 - Susceptible hybrids
 - Severe drought or soggy soil stress
 - Severe nutrient deficiency
 - Severe insect or leaf disease infestations
 - Exceptionally high yields
Late-season scouting

- Pinch or slice lower stalks for evidence of disintegrating stalk tissue
- Dig up plants and inspect roots for health and integrity
- Schedule high risk fields for early harvest
- Continue scouting during harvest
 - Stalk health condition can change rapidly
 - Gibberella stalk rot favored by October rainy period 2001
Stay informed …

Down at the …
Chat 'n Chew Café
http://www.kingcorn.org/cafe

Timely information on the Web for Eastern Corn Belt corn & soybean farmers