Mitigate the Downside Risks of Second-Year Corn

R.L. (Bob) Nielsen
Purdue University Agronomy
Email: rnielsen@purdue.edu

KingCorn: www.kingcorn.org
Chat 'n Chew Cafe: www.kingcorn.org/cafe

Summary article available online at:
www.kingcorn.org/news/articles.04/CornCorn-1222.html

Second-year corn...
- Fear & uncertainty of soy rust has "added fuel to the fire" for some growers who were already considering 2nd-year corn for economic reasons.
- Economics vary greatly depending on assumptions used in the calculations.
- Yield drag, crop prices, variable costs, uncertain need for soy fungicide or insecticide.

Short-run vs. Long-haul...
- Single-year comparison may indeed favor 2nd-year corn over rotation soy.
- Especially if applications of soy fungicides or insecticides are anticipated.
- Long-run comparison favors corn/soy when corn/corn return is less than the average of corn/soy and soy/corn returns.
- Work w/ own crop budgets if possible...

Illinois crop budgeting tool...
- Computes budget for per-acre returns for up to 4 different crops.
- Requires you already know per acre costs.
- Download (free registration) from Univ. of Illinois "farmdoc" Web page that lists numerous such spreadsheet tools.
- Look under "Farm Management" section.

www.farmdoc.uiuc.edu/fasttools/index.html

Record-keeping tools...
- "WinMax" software from Purdue
 www.agry.purdue.edu/max (free)
- "Farm Trac" software from Farm Works
 www.farmworks.com (not free)
- Numerous other software programs
 Google™ "agricultural software directory"

Agronomically...
- We cannot support 2nd-yr corn because...
 - Yields of corn/corn are at least 6 to 10% less than corn/soy.
 - Worse if risks are not managed wisely.
 - Higher risk of some diseases & insects.
 - Higher nitrogen fertilizer requirement.
 - Alters time management issues...
 - e.g., sidedressing, timely harvest
But, if you’re gonna do it…

- Then consider how to mitigate the downside risks of corn following corn.
 - Fertility, especially nitrogen.
 - Stand establishment issues.
 - Diseases & insects.
 - Hybrid selection & availability.
 - Harvest timing issues.

Fertility issues…

- Higher N requirement (~ 50 more lbs N/ac)
 - Cost & availability may be issues.
- If sidedressing N, more days will be required to cover more corn acres.
- Short-term P & K issues not serious.
 - Over time, corn/corn will remove more soil P than corn/soy.

High nitrogen fertilizer costs…

- Should encourage growers to critically evaluate their nitrogen fertility program.
 - Nitrogen application rates.
 - Nitrogen use efficiency (NUE).
 - Application timing & placement, soils, climate, farming logistics.
 - N source (product).
 - Cost, availability, NUE, farming logistics.

Nitrogen application rates…

- Traditionally, linked to field productivity.
 - Yield goals based on historical yields.
 - Five-year running average probably okay.
 - Corn following soybean:
 - Aim for about 1 lb of N per bushel *
 - Corn following corn or wheat:
 - Aim for about 1.2 lbs per bushel.

 * Assumes a 30 lb N credit for previous crop soybean. A 50 lb N credit would lower rate to ~ 0.9 lb N per bu.

Bottom line on N rates

- Use realistic yield goals (not record yields).
- Credit all the N you can from nitrogen in starter fertilizer, weed ‘n feed herbicide appl’ns, spring plowdown ammoniated phosphates, manure appl’ns.
- Given high N prices, consider shaving rates up to 10% if cash flow or N supply is tight.
 - Esp. if using higher priced urea or UAN.

More N management advice

- If cash flow or N supply is limited,
 - Apply some N to all corn fields, rather than full rate on some and skimping on others.
 - Because, greatest yield response comes from first N lbs applied, less from last lbs.
- Concentrate on achieving better nitrogen use efficiency…
Nitrogen use efficiency…

- Some of the fertilizer nitrogen we apply to a field is lost to the environment…
 - In other words, not all of the nitrogen applied to a field is used by the crop.
- Nitrogen use efficiency (NUE) is the balance between that used by plants vs. that lost to the environment.

NUE is influenced by…

- The efficiency of the “photosynthetic factory” (i.e., the plant).
 - Minimal stress = Maximum “factory” efficiency
 - 2004 record yields were classic example of high yields at high NUE.
- The occurrence & severity of nitrogen loss within the nitrogen cycle.
 - Volatilization, leaching, denitrification

Stand establishment issues

- Greater residues of corn/corn often delay soil warmup & drying in spring; can also create havoc w/ planter if no-till.
 - Target better-drained fields for corn/corn.
 - Tillage, if practical, to manage residue.
 - Row cleaners or similar no-till planter gadgets
 - Avoid planting excessively early.
 - Response to starter more likely.

Success w/ starter fertilizer…

- Depends on your ability to maximize…
 - Probability of getting a response and…
 - Potential size of the response if it occurs.
- Your goal should be to achieve the biggest bang for the fertilizer dollar.

Starter fert. decisions…

- High soil test P & K + warm seedbed.
 - Probability of yield response to starter is low and…
 - Size of expected response is low, so…
 - Little yield risk if you decide to forego the use of starter.

- High soil test P & K, but cold, “crappy” conditions for germination and seedling growth.
 - Probability of yield response to starter P & K is low, but…
 - Probability of yield response to starter N is high, so…
 - Use starter N and aim for no less than 20 lbs N per acre.

Minimum of 20 lbs N optimizes the probability and size of a starter response.
Starter fert. decisions…

- Probability of yield response to starter P and N is high, so...
- Apply N + P starter mix, but still aim for no less than 20 lbs starter N per acre.

But, recognize that 10-34-0 is not cheap…

- $279/ton (Jan '05) = $1.40/lb N = $28/ac for 20 lbs N

Disease risks

- Some seedling blight diseases thrive in cool, wet soils early in the season.
 - Avoid excessively early planting in poorly drained soils.
 - Some corn diseases survive on non-decomposed corn plant residues.
 - Especially northern corn leaf blight, gray leaf spot, Diplodia ear rot.

Northern corn leaf blight

- Conducive conditions:
 - Susceptible hybrids
 - Continuous corn
 - Disease inoculum
 - Old corn residue
 - Wet, cloudy weather
 - Temperatures ranging from 65 – 80 F

Gray leaf spot

- Conducive conditions:
 - Susceptible hybrids
 - Continuous corn
 - Disease inoculum
 - Old corn residue
 - High humidity
 - Extended periods of leaf wetness
 - Temperatures ranging from 70 – 85 F

Diplodia ear rots

- Conducive conditions:
 - Susceptible hybrids
 - Disease inoculum
 - Cool, wet weather during late whorl through early grain fill

Break the disease triangle…

- Avoid corn following corn.
- Avoid excessively early planting.
- Avoid high residue tillage practices.
 - Especially corn/corn + no-till
- Avoid susceptible hybrids.
 - Work closely w/ seed reps

Growers can most easily impact the “host” and “environment” sides of the disease triangle.
Insect issues…
- Primary insect to consider in short-term corn after corn is corn rootworm.
- Consider judicious use of soil insecticide, SAI, or transgenic Bt hybrids.
- Corn borer likely not worse in 2nd-yr corn, but pressure could elevate in lengthier continuous corn systems.

CRW control options…
- Most consistent control:
 - Granular insecticides.
 - Bt-RW hybrids (transgenics).
 - Though, some questions
- Less consistent control:
 - Liquid insecticides.
 - High rate SAI.

Seed-Applied Insecticides (SAI)
- Newer insecticide class: Neonicotinoids
 - Poncho™, Cruiser ™, Gauchos™
 - Systemic to roots & new leaves
- Targeted towards…
 - Secondary soil insects (low rate formulations)
 - Corn rootworm (high rate formulations)
- Pre-applied to seed by seed company.
 - Sometimes must be requested w/ seed order.
 - ~ $4 – $6 per acre (low rate formulations)
 - ~ $18 – 20 per acre (high rate formulations)

SAI efficacy on secondary insects?
- Purdue Entomology opinion on efficacy of low rate SAI…
 - Seedcorn maggot ~ Excellent
 - Wireworm ~ Good
 - White grub ~ Fair
 - Black cutworm ~ Fair

A form of “crop insurance”…
- Because WW & SCM do not consistently occur at damaging levels, SAI should be considered “crop insurance” with “insurance premiums” of ~ $4 - $6/ac.
- Seek the biggest “bang” for this input with:
 - Early planting (high risk cool, wet soils).
 - Fields with known history or high risk of wireworm or seedcorn maggots.

Hybrid selection
- Greater emphasis on hybrid traits important to corn/corn systems:
 - Seedling vigor
 - Disease tolerance
 - Stalk & root strength
 - Overall plant, stalk, and root health
 - Overall stress tolerance

© 2005, Purdue University
Choosing hybrids wisely…

- No such thing as a perfect hybrid or else there wouldn’t be so many hybrids for sale in the marketplace.
 - Choosing hybrids wisely is not easy.
 - Choosing hybrids wisely requires a lot of effort on your part.

Bottom line?

- There is no single method that is easy or perfect for selecting corn hybrids that will perform consistently well in your farming operation.
- Choosing hybrids wisely requires a lot of searching for yield data and a lot of homework “massaging” the data to make sense out of it.

Dumb hybrid decision-making

- Simply because it’s cheap.
- Simply because it’s new.
- Simply because it’s biotech.
- Simply because it’s the one the company has the most bags of in the warehouse.
- Simply because it’s genetically different from the other one you bought.
- Simply because you trust the seed rep.

Harvest timing issues…

- More corn acres translates to a longer corn harvest season.
 - Some corn fields will remain standing (or not) later into the fall than usual.
 - Scout fields beginning late August for stalk rot development or simply weak stalks.
 - Prioritize harvest of high risk fields if necessary.

In summary…

- Consider how to mitigate the downside risks of corn following corn.
 - Fertility, especially nitrogen.
 - Stand establishment issues.
 - Diseases & insects.
 - Hybrid selection & availability.
 - Harvest timing issues.

www.kingcorn.org/news/articles.04/CornCorn-1222.html