Managing Residue and Tillage on “Saturated Soils” for Optimum Production in the Short-term and Long-term

Tony J. Vyn, Graduate Students, Colleagues & Farmers
Prediction Accuracy Varies for Purdue Professors

Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean

D. M. Manaker,1* E. Calais,1 A. M. Freed,1 S. T. Ali,1 P. Przybylski,1 G. Mattioli,2 P. Jansma,2 C. Pr´epetit3 and J. B. de Chabalier4

1Purdue University, Department of Earth and Atmospheric Sciences, West Lafayette, IN 47907, USA. E-mail: ecalais@purdue.edu

SUMMARY

Here, we use GPS and earthquake slip vector data to produce a present-day kinematic model that accounts for secular block rotation and elastic strain accumulation, with variable interplate coupling, on active faults. The model slip rate deficit, together with the dates of large historical earthquakes, indicates the potential for a large (Mw7.5 or greater) earthquake on the Septentrional fault in the Dominican Republic. **Similarly, the Enriquillo fault in Haiti is currently capable of a Mw7.2 earthquake if the entire elastic strain accumulated since the last major earthquake was released in a single event today.**
Illinois Tillage Trend Survey for Corn
Source: Joe Bybee

Corn Crop Tillage Systems

- Conventional
- Reduced
- Mulch
- No-till

1994: Conventional (60%), Reduced (15%), Mulch (10%), No-till (10%)
1999: Conventional (55%), Reduced (20%), Mulch (15%), No-till (10%)
2004: Conventional (60%), Reduced (15%), Mulch (20%), No-till (10%)
2009: Conventional (45%), Reduced (20%), Mulch (30%), No-till (5%)
No-till (with good management) is dependable for corn after soybean with limited rutting and good drainage
Don’ts in Spring Pre-planting and Planting Operations After Harvest Ruts

• Cause more compaction or tillage pans
• Deep rip in spring
• Compromise seedbed quality (e.g. leaving large clods that dry out, or variable in-row compaction)
• Apply pre-plant NH₃ if soil conditions aren’t fit
• Be so committed to corn on corn that you can’t or won’t switch to soybean for more flexibility
• Ignore early weed control
• Smear seed furrow side-walls while planting.
Avoid Side-wall Compaction
Do’s in Spring Pre-planting and Planting Operations After Harvest Ruts

• Focus on planting timeliness and seedbed quality as higher priority than pre-plant N
• Wait until soil surface as dry as possible so that tractor/implement leaves no additional ruts
• Run tillage tools shallow as possible and insure suitable soil moisture at operating depth
• Seriously consider no-till, spring strip-till or “vertical-till” tools. Wait until dry fall for deeper loosening and surface leveling
• Maintain seedbed moisture
• Control weeds early
Spring Strip Tillage Pointers
Vertical Tillage for Corn after Soybeans
Fall Strip-Till vs. Turbo-Till® or FC
North-East Purdue Ag Center, Columbia City, IN
(2005-2006) Corn following Soybeans

![Graph showing corn yield (bu/acre) for different tillage methods.]

- Turbo once
- Turbo twice
- Field Cultivate
- Strip-till
- No-Till

Corn Yield (bu/acre)
Spring versus Fall Vertical Tillage
Long-term Rotation and Tillage Plots
Silty clay loam, W. Lafayette, IN 1975-2009
Plant Stand in No-Till Continuous Corn

- **Plow**
- **Chisel**
- **No-Till**

1975-2008
- C-S: 4% 8%
- CC: 18%

1999-2008
- C-S: 1% 6% 15%
- CC: 15%
Rotation Advantage Persists Even in High Yield Environments (e.g. 2008)
Soybean Disease Complexes:
Soybean Cyst Nematode (SCN); Sudden Death Syndrome (SDS)
Effect of tillage on SCN and SDS in corn-soybean rotation

Alison Seyb, Tony Vyn and Andreas Westphal, Purdue University (2005)
Long-term Tillage Effects on Soil Organic Matter (1975-2003, West Lafayette, IN)

Source: Gál, Vyn et al., 2007, Soil Tillage Research
Long-term Tillage and Rotation Effects on Total Soil Carbon to 40” depth (1975-2003)

Source: Gál, Vyn et al., 2007, Soil Tillage Research
Continuous versus Short-term No-till Influence on Soil Carbon Weight (1980-2003) (Mollisol, West Lafayette)

Estimated C Sequestration in Continuous No-Till
= 1.78 Mg ha$^{-1}$ yr$^{-1}$

Source: Omonode, & Vyn* 2006, SSSAJ 70:419-425
Gas Flux Monitoring of CO$_2$, CH$_4$, and N$_2$O Emissions (2004-2006)
Mean CO₂ emission in first 168 hours due to primary tillage operations (November, 2004)

Source: Omonode, Vyn et al., 2007, Soil Tillage Res. 95:182-195
Mean seasonal N_2O emission due to tillage in 2005

(Source: Omonode et al., in review SSSAJ, 2010)
Future of Residue Removal?
Surface Residue Cover with Residue Removal in Corn after Corn

% Cover

- Chisel
- No-Till

- All Removed
- Part Removed
- None Removed
Corn Yield Response to Tillage with Alternate Residue Removal in Corn after Corn (Dekalb, Monmouth, Urbana, IL) (10 location-years, 2006-2009)

Source: Emerson Nafziger, Univ. of IL
Response of Continuous Corn to CT (spring disk) and No-Till with 3 levels of Residue and 4 N Rates at Dekalb, IL in 2009 (Source: E. Nafziger and P. Henry, UI)
Corn Yield Response to Residue Removal in Corn after Corn at Perry Across 2 Alfisol environments in Illinois

Corn Yield Response to Crop Rotation and Tillage on Clarksdale Silt Loam
Source: Emerson Nafziger

Perry, 2002-07

![Bar chart showing corn yield response to crop rotation and tillage.](chart.png)
Soybean Yield Response to Crop Rotation and Tillage on Clarksdale Silt Loam
Source: Emerson Nafziger

Perry, 2002-07

Soybean yield, bu/acre

<table>
<thead>
<tr>
<th>Crop sequence</th>
<th>Tilled</th>
<th>No-Till</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-S-S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-C-S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-W-S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Purdue University
Purdue Agronomy
Corn Yield Response to Crop Rotation and Tillage on Muscatune Silt Loam Source: Emerson Nafziger
Soybean Yield Response to Crop Rotation and Tillage on Muscatune Silt Loam Source: Emerson Nafziger

Monmouth, 2002-07

<table>
<thead>
<tr>
<th>Crop sequence</th>
<th>Tilled</th>
<th>No-Till</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-S-S</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>C-S</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>W-C-S</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>C-W-S</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

Soybean yield, bu/acre
Average Maximum Soil Temperatures in First 4 Weeks after Planting (1997-2002)
Wanatah, IN on Loam Soil

- **Corn after soybean**
- **Continuous Corn**

Diagram showing average maximum soil temperatures in degrees Fahrenheit for different crop management practices.
What do Average Heights Tell us?
Uniformity More Difficult to Achieve in Corn after Corn
Chisel Plow

No-Till
Bar-coded Plants
Corn Yield Response to N fertilizer at 3 Plant Densities: (West Lafayette, IN, Average of 2 hybrids/yr and 2005-2007)

Source: Boomsma et al., Agron. J. 2009
Individual Plant Corn Yield Response to N fertilizer at 3 Plant Densities (ACRE, West Lafayette, IN, 2006)

(Source: Boomsma et al., Agron. J. 2009)
No Guarantee that Strip-till > No-till

No-till vs. Strip-till Following Soybean on loam soil, Wanatah, IN, 2008
Corn Yield Response to Tillage and Planting Date after Soybean, Silty Clay Loam

- Early: 2003-2004
 - Strip-Till: a
 - No-Till: a
 - Chisel: b

- Normal: 2006-2008
 - Strip-Till: b
 - No-Till: b
 - Chisel: b
Strip Tillage for Corn after Corn?
No-Till vs. Strip-till following Corn
(Loam soil, Wanatah, IN, 2008)
Strip Tillage for Corn after Soybean and Corn in N. Indiana, Loam Soil (2001-08)

Previous Crop

Yield (bu./ac)

- **Soybean**
 - Fall Chisel: 208
 - Strip-till: 212
 - No-till: 205

- **Corn**
 - Fall Chisel: 195
 - Strip-till: 195
 - No-till: 184

Letters indicate significant differences at the 0.05 level.
RTK Automatic Guidance
Precision of Planting Following Strip Tillage?
Row Position is Critical

Source: Norm Larson, Elburn Co-op, IL
Conclusions about Residue and Tillage Management in Challenging Years?

1. New tillage options and technology advances in residue management and automatic guidance expand the options available to growers.

2. Avoid premature ("rushed"), deep, cloddy or intensive tillage in spring following harvest ruts.

3. No-till and strip tillage options can be successful for corn even in first-time fields.
4. Adoption of long-term tillage should be guided by research instead of testimonials and marketing.
Acknowledgments

Funding:
- USDA-CASMGS
- Indiana Soybean Alliance
- Purdue University (Mary S. Rice & Mission Oriented Funds)
- Foundation for Agronomic Research (PPI or IPNI)
- Fluid Fertilizer Foundation
- John Deere & Co.

Equipment:
- John Deere Cropping Systems Unit
- Case-DMI (Goodfield, IL)
- Remlinger (Kalida, OH)

Seed:
- Pioneer Hi-Bred, Int.
- Beck’s Hybrids
Thanks!

tvyn@purdue.edu

home page:
//www.agry.purdue.edu/staffbio/vyn

Boomsma and Vyn, 2007 (Purdue AY 329-W)