### Preferred K Placement Choices for Corn in High Yield and Conservation Tillage Systems?

Tony J. Vyn, Ann Kline, Scott McCoy Brian Ball and Ignacio Conti

# **PURDUE**





### **Corn Yields after Soybean (1975-02)**



## Potassium Stratification Long-Term Tillage (IN, 1975-94)



Source: Holanda et al. (1998)

### Conservation Tillage Doesn't Alter K distribution appreciably





### **Strip Tillage with Fertilizer Banding**







# Does K placement Matter? Implications for Management?



### Strip Tillage for Corn in N. Indiana, Loam (2001-03)



#### **Previous Crop**

### **Planting Date Effects in 2003**



### Mean Soil-test K Stratification at Davis-PAC



Source: Vyn et al., Better Crops #4, 2002

#### Soybean Yields for 2001 **Placement in presence of** Plot Blocks Soybean Yield (bu/ac) high soil K variability? 5 - 25 25 - 35 35 - 45 45 - 55 55 - 65 65 - 75 75 - 200 Tony Vyn/Brian Ball Davis Purdue Ag Center UTM Zone 16 February 2002 .... 600 Fee Sample Areas <90 mg/kg 90-125 mg/kg ......... >125 mg/kg ..... Plot Blocks Order 1 Condit Pewamo 10 200 Meters Blount Glynwood

# High oil corn yields in response to K placement (Davis-PAC 2000-01)



Soil-test K at 2-6"

Source: Vyn et al., Better Crops #4, 2002

### No-till Soybean Height Differences at Davis PAC in 2003



No K (2000-2002)

Broadcast plus Starter K (2000,2002

### Impact of K Banding Depth in Corn?



### **High Yield Corn Response to Placement**

Hybrids: 1. Pioneer 34B24

2. Pioneer 34M95

**Populations:** 

32,000
42,000

**P&K** Fertilizer

- Placements: 1. Control
  - 2. Broadcast
  - 3. Shallow Band (6")
  - 4. Deep Band (12")
  - 5. Shallow + Deep (6 and 12")



#### Sponsor: PPI-FAR 2001-2003

### Placement Effects on Leaf K % Pion. 34M95 in 2003



K %

### **Yield Evaluation**



### Yield Responses to Placement in 2001-2002



### **Corn Yield Response of Pion. 34M95 to Alternate P plus K Placements in 2003**



### **Consistency of Resource Availability in High Population Environments ?**



### 6-7" Placement Effects in 2003



## **USB-FAR Projects in 2003**



#### Split-split plot Treatments:

**Prior Corn Hybrids (2)** 

**Prior Fertility:** 

- 1. Control
- 2. Broadcast P and K
- 3. Band P and K (6")
- 4. Band P alone
- 5. Band K alone

Potassium in 2003:

- 1. None
- 2. Broadcast

### Row position effects on Exch. K ppm High Yield Corn Plots, 2002



### **Row Position Effects on Soil K**



### Conclusions

- 1. Strip tillage has numerous advantages for corn producers.
- 2. Banding of K has possible advantages in stratified soils, dry summers, and in high yield situations.
- 3. Banded K may be more beneficial with certain hybrids and environments (high populations)
- 4. More research required on rates, mixtures, and impact on no-till soybean..

# Thanks!

#### Funding: PPI-FAR Purdue RF Pioneer (Dupont) Case

Equipment: Case-DMI John Deere

