

No-Till and Strip-Till: A Closer Look From Both Sides

Tony J. Vyn, with assistance from farmers, graduate students, technicians, and colleagues

Source: Purdue University-Transect Data

2002 Indiana Cropland Tillage Map

Percent of all Corn Fields planted using No-till

So What is Problem?

Planting Date?

Nutrient Availability?

Pests?

Yields?

Maturity?

Poor Stand Establishment?

Corn Response to Tillage and Rotation West Lafayette, IN, (1975-2003)

Tillage	Corn/Soybean		Continuous Corn		Yield Gain for Rotation
	Bu/ac	% of plow yield	Bu/ac	% of plow yield	%
Plow	176		169		5
Chisel	177	100	164	97	8
Ridge*	182	103	167	99	9
No-till	173	98	146	87	18

Corn Yields Following Soybeans, Chisel Vs. No-till, West Lafayette, IN, 1975-2003.

Soybean Response to Tillage and Rotation, West Lafayette, IN (1975-2003)

Tillage	Corn/Soybean		Continuous Soybean		Yield Gain for Rotation
	Bu/ac	% of plow yield	Bu/ac	% of plow yield	%
Plow	53		48		10
Chisel	52	97	46	95	12
Ridge *	51	96	45	93	13
No-till	50	95	46	96	9

Soybean Yields Following Corn, Chisel Vs. No-till, West Lafayette, 1975-2003.

Population densities of Soy. Cyst Nematode under different crop sequences and tillage

Source: Holanda et al. (1998)

Vertical soil K stratification averaged over years (1998-2000) at Strathroy

Soil Exchangeable K (ppm)

Vertical soil K stratification averaged over years (1998-2000) at Kirkton

Exchangeable K (mg/l)

Source: Vyn et al., Better Crops #4, 2002

High oil corn yields in response to K placement (EC Indiana, 2000-01)

Soil-test K at 2-6"

Source: Vyn et al., Better Crops #4, 2002

RESPONSE OF CORN TO ROW-APPLIED K ON A SILTY CLAY LOAM SOIL (3 yr. avg.)

Dr. Wolkowski, UW, Oshkosh, Wis. (45 lb K₂0/a)

Corn Yield Response to K Fertilizer Placement at Kirkton, Ontario (1996-98) Starter K rate:

Low 0-9 lb/ac High 45-54 lb/ac

Fall K rate (lb/ac)

Vyn et al. 2001. Agron. J. 93: 487-495

Hybrid and Seasonal Effects on K Response to Banding

Most response to K banding with dry June and avg. soil K below 150 ppm.

No-till Yield Reductions in Corn? Soil temperature versus soil moisture?

Tillage Effects on Corn Yield Response to Average Soil Moisture Contents During Early Growth

Early Plant[™] Technology

It knows when to grow !

Below 55°F

Above 55°F

Hybrid Seed

Corn

Intellicoat[®]

Early Plant™ Coating

Seeds of Innovation

Planting Date: March 28

Coatings and Emergence Time in 2003 (average of 3 hybrids at West Lafayette)

Coating Effects on Corn Yield in 2003 (mean of 3 hybrids at West Lafayette)

Fall Strip-till Option?

Strip Tillage with Fertilizer Banding

What are we after with strip-till?

Yields

- (relative to no-till; stability)
- Planting Timeliness
 - (pre-plant soil conditions)
- Fertilizer Placement Efficiencies (systems approach)

Soil Drying Pattern (0-6") after Wheat (ON, 1999)

2002 Soil Moisture In-row, pre-plant measurements

Soil Moisture

Strip-till versus No-till Corn after Wheat (Belmont, ON)

Strip-till on left, no-till on right

Tillage Effects on Corn Yield After Wheat

Centralia and Wyoming, ON (1994-96)

■ Moldboard ■ Chisel ■ Fall Disk ■ Strip-till ■ No-Till (baled)

Wheat Residue Effect on No-till Corn Yields

Centralia & Wyoming (1994-96)

Opoku, Vyn & Swanton (Agron. J. 89:549)

Tillage Effects on Corn Yields After Soybeans (Hooker, Avg. of Alvinston and Fingal, ON, 1994-96)

Plow Chisel Strip-till No-Till

Fall tillage effects on corn yield after soybeans (averaged 1998-00) in Ontario.

Tillage Treatments

Fall tillage effects on corn yield after wheat (averaged over 98-00) in Ontario.

Tillage Treatments

Corn yields in Indiana following soybeans in Indiana (1999-2001)

Photo Credit: Greg Stewart

2001-2003 Ontario Yield Summary (courtesy of Greg Stewart, 2004)

Year	PLOW	FALL	NO-TILL			
		STRIP				
2001	100	101	100			
2002	105	102	100			
2003	103	103	100			
AVE.	103	102	100			
Represents 38 site/year comparisons over the three years.						

Strip Tillage for Corn in N. Indiana, Loam (2001-03)

Previous Crop

Fall Strip-till 8" depth

DMI 2500 with Mole Knife

Soybean Harvest and No-till Double-crop Corn: Brazil Style

Conclusions

1. No-till corn adoption higher in Indiana, but reservations on increased adoption are the same.

2. Technology changes have improved success rate.

3. Strip tillage for increased planting flexibility and opportunity for fertility placement.

4. Nutrient management needs more attention in notill and strip-till corn.

Thanks!

tvyn@purdue.edu

home page: //www.agry.purdue.edu/staffbio/vyn

Soybean K Fertility Issues?

Aerial accumulation of N, P, and K by soybean (80 bu/A)

Source: Henderson, J.B., and E.J. Kamprath. 1970. Tech. Bull. 197. NC Agric. Exp. Stn., Raleigh. NC

Does K placement Matter? Implications for Row Width?

Narrow-Row Soybeans Following Corn with Alternate K Placement

- 1. Extent of vertical and horizontal soil exchangeable K distribution
- 2. Actual soybean row widths
- 3. Environment and genetic impacts on root system distribution

Soybean Yield Responses to K fertilizer Placement in Ontario (1998 to 2000)

Location	Initial Soil K	Zero K	Zero K Broadcast Band	
	mg L ⁻¹	bu ac ⁻¹		
Paris	42	35.6b	36.2b	39.2a
Kirkton	85	43.5a	43.7a	43.6a
Strathroy	128	47.2b	48.6ab	49.8 a

K fertilizer rate: 89 lb a⁻¹

Tillage: no-till for Paris,

: no-till, fall zone-till, and fall disk

for Kirkton and Strathroy

Source: Yin and Vyn, 2002

Yin and Vyn, Agron. J.. 2002

Soybean Trifoliate Leaf K at R1?

Y=55.7+3.1X-0.06X² P<0.05 R²=0.33

