

Conservation Tillage Systems for Corn on Corn: Midwest Perspectives

Tony J. Vyn, assisted by colleagues, graduate students, technicians, and farmers

What is a Conference?

 A conference is a gathering of important people who individually can do nothing, but who together can decide to do nothing! Fred Allan

What is a Conference?

- A conference is a gathering of important people who individually can do nothing, but who together can decide to do nothing! Fred Allan
- What is a No-Till Conference?

A no-till conference is a gathering of experienced farmers who individually no-till, but who together can decide how to do nothing better!

Indiana Tillage Data, 1990-2004

(percent of total cropland for specific crop in a no-till system)

Source: Purdue University-Transect Data

Source: CTIC National Crop Residue Survey

Corn after Soybean versus Corn after Corn?

Grain-based U.S. Ethanol Production, 1980-2006 **U.S. Ethanol Biorefinery Locations** 4500 4000 3500 Millions of Gallons 3000 2500 Biorefineries in Production (106) Biorefineries under Construction (48) 2000 Source: Renewable Fuels Association 1500 1000 500 **Source: Renewable Fuels Association** 0

Year

Ratio of Corn to Soybean Acres (2005)

Appendix Figure 6. Corn Acres Divided by Soybean Acres, 2005

Source: G. Shnitkey, Univ. of Illinois, Farm Economics Facts and Figures (Sept. 15, 2006)

What Kind of Corn-Dominant Rotation?

- Continuous Corn
- Soybean-Corn-Corn
- Soybean-Corn-Corn-Corn
- Soybean-Corn-Corn-Soybean-Corn
- Soybean-Wheat-Corn-Corn-Corn
- Alfalfa-Alfalfa-Alfalfa-Corn-Corn-Corn

Corn Yield Means After 5 Years of Soybean

(Arlington, WI; 1987 to 2005; Control Treatments)

Source: J. Lauer and T. Stanger, Univ. of Wisconsin

Soybean Yield Means after 5 Years of Corn

(Arlington, WI; 1987 to 2005; Control Treatments)

Source: J. Lauer and T. Stanger, Univ. of Wisconsin

Corn Yield Response to Tillage After 5 Years of Soybean (Arlington, WI; 1987 to 2005; Control Treatments)

Source: J. Lauer and T. Stanger, Univ. of Wisconsin

Corn Response to Tillage & Rotation on Kenyon Loam Soil, Nashua, IA (1978-1997)

Tillage	Corn/Soybean		Con't. Corn		Yield Gain for Rotation
	bu/acre	Relative yield	bu/acre	Relative yield	
Plow	146ab	100%	137a	100%	6%
Chisel	147a	101%	132b	96%	11%
Ridge	142c	97%	129c	94%	10%
No-till	144bc	99%	123d	90%	17%

Source: Al Kaisi and Yin, 2004

Corn Yield Response to Rotation & Tillage: Southern Iowa Region (2002-2005)

Crawfordsville & Chariton, IA

Source: M. Al Kaisi, Iowa State

Corn Yield Response to Rotation & Tillage: North-East Iowa Region (2002-2005) Nashua, IA

Source: M. Al Kaisi, Iowa State

Corn Yield Response to Rotation and Tillage: North-Central Iowa Region (2002-2005) Ames & Kanawha, IA M. Al-Kaisi, 2006, Iowa State Univ.

	Corn Yield Response to Tillage & Rotation, Silty Clay Loam, Lafayette, IN, 1975-2006								
Tillage	Corn/S	oybean	Con't	. Corn	Yield Gain for Rotation				
		% of plow		% of plow					
	bu/ac	yield	bu/ac	yield					
Plow	179.8		172.4		4%				
Chisel	180.1	100%	167.7	97%	7%				
No-till	175.2	97%	148.8	86%	18%				

Average Maximum Soil Temperatures in First 4 Weeks after Planting (1997-2002)

Grain Yield Response of No-till Continuous Corn vs. Plow + No-till Rotation Corn (1980-1994)

Long-term Tillage Effects on Soil Organic Matter (1975-2003, West Lafayette, IN)

Organic Matter (%)

Source: Gál and Vyn, 2006

Bulk Density (g/cm³)

Long-term Tillage and Rotation Effects on Total Soil Carbon to a 39.3" depth (1975-2003)

Soil Organic C (tonnes/ha)

Source: Gál & Vyn, 2006

Long-term Tillage Effects on Soil N (1975-2003), West Lafayette, IN

Source: Gál & Vyn, 2006

Gas Flux Monitoring of CO₂, CH₄, and N₂O Emissions (2004-2006)

Rotation Effects on Mean CO₂ Emissions

Mean seasonal N₂O emission due to tillage in 2005

(Source: Omonode & Vyn, 2006)

Long-term Tillage Effects on Soil Available P & Exchangeable K with Broadcast Application (Soybean-Corn Rotation, 1975-2003, West Lafayette, IN)

Soil Depth Soil Depth 0-2" 0-2" 2-6" 2-6" 6-12" 6-12" No-till No-till 12-20" 12-20" ■ Plow ■ Plow 50 100 150 200 0 0 100 200 300 400 500 Soil P (ppm) Soil K (ppm)

Tillage Influence on Cumulative Soil P

Source: Gal and Vyn, 2005

No-till Corn Yields – Continuous as % Of Rotation – Loam Soil, Wanatah, IN (1997-2006)

Fertilizer Management Issues for Corn after Corn with Conservation Tillage

- Starter more important (Residues? Date?)
- More N needed for any version of corn after corn than typical corn-soybean rotation

Rotation Effects on Corn Response to Nitrogen Nashua, IA, Mean of 1979 to 2004

Source: Mallarino and Ortiz-Torres, Iowa State Univ.

RTK + Pre-plant UAN Application 2006

RTK and Pre-plant UAN at Wanatah, IN

50 N at 0"versus 200 N at 0"

100 N at 0" versus 100 N at 10"

RTK and Pre-plant UAN at Wanatah, IN, 2006

200 N at 5" versus 200 N at 0"

200 N at 5" (background) vs. 200 N at 0" (foreground)

Stuart Birrell, Ag and Biological Engineering, Iowa State

Questions about Corn Stover Removal

Feasibility for ethanol production?

Effects on soil properties?

Improved situation for No-till?

Fall Strip Tillage

What are we after?

Yields

 (relative to no-till; stability)

 Planting Timeliness

 (pre-plant soil conditions)

 Fertilizer Placement Efficiencies

 (systems approach)

Strip Tillage for Corn after Soybean

Strip-till Corn Yield Results in Illinois (Mean of 11 site years 1999-2002)

Source: Guebert et al, 2003 IL Fert. Conf. Proc.

Corn Yield Response to Tillage and Planting Date in Indiana, 2003-04

Berm Heights in Spring after Successful Strip Tillage

Other Spring Tillage Options?

Recent Strip Tillage Options

- Automatic Guidance Systems for Planting Ease
- Berm Building Alternatives (disk, rolling basket)
- Residue Clearance Options
- Strip-till for Soybean??
- Fertilizer Banding Options

RTK Planting after Strip-Till (West Lafayette, 2006)

RTK Plot Harvest 2006

Strip Tillage with Fertilizer Banding

Strip Tillage with Nutrient Banding in Small-plot Research

Key Drivers of Strip Tillage Adoption in the Future?

- Automatic Guidance Systems (lower HP and width)
- Controlled Traffic Adoption in Both Corn and Soybean?
- Improved Fertilizer Efficiency with Banding (especially if no starter fertilizer on planters)?
- Back-up Systems when Falls are too Wet to Complete Strip Tillage?

Conclusions

1. Adopt no-till and strip-till in corn-soybean rotations where possible.

- 2. Soil Carbon and N gains with continuous No-till aren't hugely significant on all soils.
- 3. Figure out how to save soil by doing less tillage if you grow corn after corn! Strip-till??

Conclusions (continued)

- 4. Manage for uniformity in soil conditions for root growth
- 5. Aim for controlled traffic systems in future
- 6. Automatic Guidance with RTK is a potential benefit

7. Invest in Research!

Acknowledgments

Funding:

USDA-CASMGS Purdue University Mary S. Rice Farm Fund Foundation for Agronomic Research (PPI or INPI) Fluid Fertilizer Foundation John Deere & Co.

Equipment:

Case-DMI (Goodfield, IL) John Deere Cropping Systems Unit Remlinger (Kalida, OH)

Seed:

Pioneer Hi-Bred, Int. Beck's Hybrids

tvyn@purdue.edu

home page: //www.agry.purdue.edu/staffbio/vyn

