Optimizing Tillage Systems in Modern Corn Production: Pointers

Tony J. Vyn, Graduate Students, Colleagues & Farmers

Illinois Tillage Trend Survey for Corn Source: Joe Bybee

No-till (with good management) is dependable for corn after soybean with limited rutting and good drainage

Long-term Rotation and Tillage Plots

Silty clay loam, W. Lafayette, IN 1975-2011

Plant Stand in No-Till Continuous Corn

Corn Yield Response to Tillage and Rotation, Silty Clay Loam, W. Lafayette, IN, 1975-2010.

Rotation Advantage Persists Even in High Yield Environments (e.g. 2008)

Rotation Advantage was very evident in the stress environment of 2010!

Uniformity More Difficult to Achieve in Corn after Corn

Soybean Yield Response to Tillage and Rotation, Silty Clay Loam, W. Lafayette, IN, 1975-2010.

Soybean Disease Complexes: Soybean Cyst Nematode (SCN); Sudden Death Syndrome (SDS)

Long-term Tillage Effects on Soil Organic Matter (1975-2003, West Lafayette, IN)

Factors affecting N Losses

- Rainfall Amounts and Soil Moisture
- Soil Temperature
- N Rate, Timing and Mineralization (NO₃+NH₄)
- Tillage (No-till = 57% reduced N_2O gas losses)
- Soil pH and Ca concentration
- Rate of plant N uptake or decomposition

Diagonal versus Parallel Pre-plant NH₃ Placement (2010)

Planting No-till Corn after Diagonal NH₃ Placement in Spring, 2010

6=

Materials and Methods

• Tillage system (split plot)

- Chisel plow: chisel plow in fall, field cultivate in spring
- <u>No-till</u>: rows planted to the side or between old rows
- N fertilization (split-split plot)
 - 60, 120, 180, 240 lb N/acre
 - Sidedressed as UAN at the V3 stage
- Plot size: 8 rows (20 ft) wide x 40 ft long

No residue removed

Soil temperature at 2 inches over the first 3 weeks after planting at DeKalb, IL in 2007

DeKalb 2010

Spring Strip Tillage Pointers

Vertical Tillage for Corn after Soybeans

Fall Strip-Till vs. Turbo-Till[®] or FC

North-East Purdue Ag Center, Columbia City, IN (2005-2006) Corn following Soybeans

Spring versus Fall Vertical Tillage

Deep Ripping

Vertical tillage and Soil Moisture in 2009

Tillage Treatment	Moisture % May 26	Moisture % Post-plant
No-till	38 a	44 a
Fall strip-till	28 bc	37 bcd
Fall Salford RTS + Spring Salford RTS	33 b	36 bcd
Spring Salford RTS		41 ab
Fall Deep-Rip	30 bc	37 bcd
Fall Chisel + Spring Disk	27 c	32 d

Vertical Tillage will:

.... Help the **Transition to No-till?**Mitigate the **Transition away from No-till?**

Strip-till and RTK

No Guarantee that Strip-till > No-till No-till vs. Strip-till Following Soybean on loam soil, Wanatah, IN, 2008

Corn Yield Response to Tillage and Planting Date after Soybean, Silty Clay Loam

Strip Tillage for Corn after Corn?

No-Till vs. Strip-till following Corn (Loam soil, Wanatah, IN, 2008)

Strip Tillage for Corn after Soybean and Corn in N. Indiana, Loam Soil (2001-08)

Row Position is Critical

Source: Norm Larson, Elburn Co-op, IL

RTK Automatic Guidance

Pointers about Residue and Tillage Management in Modern Corn Production?

- 1. New tillage options and technology advances in residue management and automatic guidance expand the options available to growers.
- 2. Avoid excessive fall tillage and premature ("rushed"), deep, or intensive tillage in spring.
- 3. No-till and strip tillage options can be successful for corn (even in first-time fields), but crop rotation and fertility management matters!

4. Adoption of tillage should be guided by research instead of testimonials and marketing.

Acknowledgments

Funding: USDA-CASMGS Indiana Corn Marketing Council Purdue University (Mary S. Rice & Mission Oriented Funds) Foundation for Agronomic Research (PPI or IPNI) Fluid Fertilizer Foundation John Deere & Co.

Equipment:

John Deere Cropping Systems Unit Case-DMI (Goodfield, IL) Remlinger (Kalida, OH)

Seed:

Pioneer Hi-Bred, Int. Beck's Hybrids

Thanks!

tvyn@purdue.edu home page: //www.agry.purdue.edu/staffbio/vyn

