Certainty or Velocity to control seedling *Poa trivialis* in seedling creeping bentgrass: Fall applications

James Rutledge and Zac Reicher
Dept. of Agronomy
Purdue University
West Lafayette, IN
31 Jan. 2008

Background/Objective: To evaluate various rates and application timings of Velocity and Certainty on control of seedling *Poa trivialis* and safety on seedling creeping bentgrass.

Rationale: *Poa trivialis* is a difficult to control perennial grassy weed throughout the eastern Midwest in lawns, athletic fields and golf course fairways. Control of *Poa trivialis* using Velocity or Certainty has proven highly variable and may be dependant on many factors including temperature, mowing height, cultivar, as well as rate and frequency of herbicide application. Controlling *Poa trivialis* at the seedling stage using these products may reduce and/or eliminate many of these contributing factors to variable control while also allowing for the use of lower rates and fewer applications thus reducing creeping bentgrass injury and cost.

Site Information
- **Location:** William H. Daniel Research and Diagnostic Center
- **Soil Type:** Starks-Fincastle silt loam
- **Soil pH:** 7.2
- **Turfgrass Species:** Creeping bentgrass and Rough bluegrass
- **Turf Condition:** Seedling
- **Turf Management:** Mowing Height cm (in): 1.25 (.5) approximately
- **Fertilization:** 0.5 lb N (starter fertilizer, 2 apps)
- **Irrigation:** To prevent moisture stress
- **Testing on Site Previous Year:** None
- **Target Pest:** Rough bluegrass
- **Growth Stage:** Seedling

Application Information
- **Application Date:** 16 Aug (07) 23 Aug 29 Aug 5 Sep
- **Application Time:** 8:30 a.m. 7:00 a.m. 3:00 p.m. 2:00 p.m.
- **Air Temperature C°(F°):** 22 (71) 23 (73) 36 (96) 34 (92)
- **Relative Humidity(%):** 94 88 74 24
- **Wind Speed m s⁻¹ (mph):** 0.44 (1.0) .88 (2.0) .88 (2.0) 2.2 (5.0)
- **Soil Temperature(7.6 cm depth) C°(F°):** 23 (74) 23 (74) 33 (92) 30 (86)
- **Soil Moisture:** moist moist dry dry
- **Spray Volume L ha⁻¹ (gal 1000 ft⁻²):** 407 (1)
- **Spray Pressure:** 30psi
- **Spray Nozzle:** 8001
- **Spray Equipment:** CO₂ backpack
- **Irrigation After Application:** None
- **Experimental Design:** Randomized complete block
- **Replications:** 3
- **Plot Size m (ft):** 1.0 X 1.0 (3.3 X 3.3)

This study was designed as a 2 X 5 X 4 factorials with two herbicides (Certainty and Velocity) applied at five rates each, on 4 dates after emergence (1, 2, 3 and 4 weeks after emergence – WAE). Separate but adjacent studies were used for ‘Laser’ *Poa trivialis* and ‘L93’ creeping bentgrass. This study will be repeated in 2008, thus full statistical analysis has not been completed and simple means are presented.
Results:

- Velocity applied one WAE provided excellent control of *Poa trivialis* (especially at the higher rates) while producing minimal to no damage to creeping bentgrass (Figure 1).
- Though Certainty provided excellent control of *Poa trivialis* when applied one WAE, it damaged creeping bentgrass significantly. Certainty applied at four WAE was much safer on creeping bentgrass while still providing acceptable control of *Poa trivialis*.
- Though multiple applications were not examined in this study, our previous work suggests that multiple applications of Velocity or Certainty improve control over single applications and might be considered to improve control.
- Both herbicides show tremendous promise in reducing or eliminating seedling *Poa trivialis* in seedling creeping bentgrass, thereby reducing long-term maintenance inputs from *Poa trivialis* contamination.

Figure 1. Effect of Velocity 17.6 or Certainty when applied to stands of seedling *Poa trivialis* or creeping bentgrass at various times after emergence. Data presented were taken 8 weeks after emergence.